검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 64

        1.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High temperature deformation behavior of activated sintered W powder compacts was investigated. The compression tests were carried out in the temperature range between 900 and 110 at the strain rate of . The sintered specimens of Ni-doped submicron W powder compacts showed decrease in W grain size with increasing the Ni content. As the result, the flow stress was significantly increased with increasing the Ni content. We obtained Ni-activated sintered W compacts with the relative density of 94 l%and the average grain size of less than 5. A moderate true strain up to 0.60 was obtained without fracture even at 110 with the strain rate of for the activated W compact despite adding the 1.0 wt%Ni to submicron W powder.
        4,000원
        2.
        2004.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electrical and thermal conductivity of W-Cu composites were investigated as a function of the W-particle size and W-W contiguity. Powder mixtures were prepared by ball milling or mechanical alloying process, and then sintered at various temperatures. The electrical conductivity of sintered composite was increased with decreasing W grain size. Dependence of electrical conductivity on the W grain size was explained by the W-W contiguity concept. The thermal conductivity was increased with increasing the temperature up to but decreased at the temperature above Also, thermal conductivity value was influenced by the W particle size. Change of thermal conductivity in W-Cu composites was discussed based on the observed microstructural characteristics and theoretical considerations.
        4,000원
        5.
        2002.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The high temperature deformation behavior of the activated sintered W powder compacts was investigated. The W compact showed the relative density of 94% with the average W grain size of by activated sintering at for 1 hour. Compression tests were carried out in the temperature range of at the strain rate range of /sec - /sec. True stress-strain curve and microstructure exhibited the grain boundary brittleness which was dependent on the compression test temperature. The activated sintered W compact showed that the maximum stress as well as the strain at the maximum stress was abruptly decreased as the test temperature increase from to 1000 and regardless of the strain rate. The discrepancy of the microstructure in the specimen center was obviously observed with the increase of the test temperature. After compression test at the W grain was severely deformed normally against the compression axis. However, after compression test at and the W grain was not deformed, but the microcrack was formed in the W grain boundary. The Ni-rich second phase segregated along the W grain boundary could be partly unstable over and affect the poor mechanical property of the activated sintered W compact.
        4,000원
        7.
        2002.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The production of micro components is one of the leading technologies in the fields of information and communiation, medical and biotechnology, and micro sensor and micro actuator system. Microfabrication (micromachining) techniques such as X-ray lithography, electroforming, micromolding and excimer laser ablation are used for the production of micro components out of silicon, polymer and a limited number of pure metals or binary alloys. However, since the first development of microfabrication technologies there have been demands for the cost-effective replication in large scale series as well as the extended range of available material. One such promising process is micro powder injection molding (PIM), which inherits the advantages of the conventional PIM technology, such as low production cost, shape complexity, applicability to many materials, applicability to many materials, and good tolerance. This paper reports on a fundamental investigation of the application of W-Cu powder to micro metal injection molding (MIM), especially in view of achieving a good filling and a safe removal of a micro mold conducted in the experiment. It is absolutely legitimate and meaningful, at the present state of the technique, to continue developing the micro MIM towards production processes for micro components.
        4,000원
        12.
        2001.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recent remarkable progress in the semiconductor industry has promoted smaller size of semiconductor chips and increased amounts of heat generation. So, the demand for a substrate material to meet both the characteristics of thermal expansion coefficient and heat radiation has been on the increase. Under such conditions, tungsten(W)-copper(Cu) has been proposed as materials to meet both of the above characteristics. In the present study, the W-10wt.%Cu powders were synthesised by the mixing and hydrogen reduction of the starting mixture materials such as W-Cu, and in order to obtain the full densification. The W-10wt.%Cu produced by hydrogen reduction showed the higher interparticle friction than the simple mixed W-10wt%Cu because of the W agglomerates. In the dilatometric analysis the W-10wt.%Cu prepared from the was largely shrank by heating up at the constant heating rate of /min. The possibility of application of metal injection molding (MIM) was also investigated for mass production of the complex shaped W-Cu parts in semiconductor devices. The relationship between the temperature of molding die and the pressure of injection molding was analyzed and the heating up stage of 120- in the debinding process was controlled for the most suitable MIM condition.
        4,000원
        15.
        2001.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, the effect of Ni content on densification and grain growth in Ni doped W compacts was investigated by using the dilatometric analysis. The Ni-doped W compacts with various amount of Ni activator from 0.02 to 0.4 wt% were sintered in hydrogen atmosphere up to 140. As the amount of Ni and heating rates, the Ni-doped W compacts show a greatly different dilatometric behavior during the sintering. The sintered specimen was densified over 98% of theoretical density by adding only 0.06 wt% Wi in sub-micron W powder and the appropriate heating rate. It was also observed that the microstructure development strongly depended on the change of the Ni amount. In addition, it was found that the critical content of Ni showing large grain growth in microstructure was below 0.1 wt%.
        4,000원
        16.
        2000.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An investigation was carried out on the possibility whether the ball-milling process of low energy could successfully improve the packing density and flowability for MIM application in W-20wt%Cu system. In this study, W-20wt%Cu powder mixture was prepared by ball-milling. W powder was not fractured by low mechanical impact energy used in the present work during the critical ball-milling time, but the ductile Cu powder was easily deformed to the 3 dimensional equiaxed shape, having the particle size similar to that of W powder. The ball-milled mixture of W-20wt%Cu powder had the more homogeneous distribution of each component and the higher amount of powder loading for molding than the simple mixture of W-Cu powder with an irregular shape and a different size. Accordingly, the MIM W(1.75)-20wt%Cu powder compacts were able to be sintered to the relative density of 99% by sintering at for one hour.
        4,000원
        17.
        2000.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to enhance sinterability of W-Cu composites used for heat sink materials, mechanical alloying process where both homogeneous mixing of component powders and fine dispersion of minor phase can be easily attained was employed. Nanostructured W-Cu powders prepared by mechanical alloying showed W grain size ranged of 20-50 nm and were able to be efficiently sintered owing to the fine particle size as well as uniform distribution of Cu phase. The thermal properties such as electrical resistivity, coefficient of thermal expansion and thermal conductivity were evaluated as functions of temperature and Cu content. It was found that the coefficient of thermal expansion could be controlled by changing Cu content. The measured electrical resistivities and thermal diffusivities were also varied with Cu content. The thermal conductivities calculated from the values of resistivities and diffusivities showed similar tendency as a function of temperatures. However, this is in contradiction with thermal conductivities of pure W and Cu which decrease with increasing temperature.
        4,000원
        18.
        2000.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the fabrication of /5vol.%Cu nanocomposite and its mechanical property were discussed. The nanocomposite powders were produced by high energy ball milling of and Cu elemental powders. The ball-milled powders were sintered with Pulse Electric Current Sintering (PECS) facility. The relative densities of specimens sintered at and after soaking process at were 96% and over 97%, respectively. The sintered microstructures were composed of matrix and the nano-sized Cu particles distributed on grain boundaries of matrix. The nanocomposite exhibited the enhanced fracture toughness compared with general monolithic . The toughness increase was explained by the crack deflection and bridging by dispersed Cu particles.
        4,000원
        1 2 3 4