간행물

한국분말야금학회지 KCI 등재 Journal of Korean Powder Metallurgy Institute

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol. 18 No. 4 (2011년 8월) 10

2.
2011.08 구독 인증기관 무료, 개인회원 유료
Inkjet printing was successfully done using Cu nano powder ink after these Cu nano powders were dry-coated with 1-octanethiol for oxidation prevention. 1-octanethiol, which is Self-Assembled Multi-layers (SAMs), was coated approximately 10-nm thick on the surface of Cu nano powders. 1-Octanol, which has the same chain length as that for 1-octanethiol, was used as a solvent to make the ink for inkjet printing. As a result, the fabricated ink was dispersed for about 4 weeks, and after printing and heat treatment at for 4 hours, the resistivity for the printed pattern was measured to be .
4,000원
3.
2011.08 구독 인증기관 무료, 개인회원 유료
In order to fabricate the porous metal with controlled pore characteristics, unique processing by using metal oxide powder as the source and camphene as the sublimable material is introduced. CuO powder was selected as the source for the formation of Cu metal via hydrogen reduction. Camphene-based CuO slurry, prepared by milling at with a small amount of dispersant, was frozen at . Pores were generated subsequently by sublimation of the camphene. The green body was hydrogen-reduced at for 30 min, and sintered at for 1 h. Microstructural analysis revealed that the sintered Cu showed aligned large pore channels parallel to the camphene growth direction, and fine pores are formed around the large pore. Also, it showed that the pore size was controllable by the slurry concentration.
4,000원
4.
2011.08 구독 인증기관 무료, 개인회원 유료
Cemented tungsten carbide has been used in cutting tools and die materials, and is an important industrial material. When the particle size is reduced to ultrafine, the hardness and other mechanical properties are improved remarkably. Ultrafine cemented carbide with high toughness and hardness is now widely used. The objective of this study is synthesis of nanostructured WC-Co powders by liquid phase method of tungstate. The precursor powders were obtained by freezen-drying of aqueous solution of soluble salts, such as ammonium metatungstate, cobalt nitrate. the final compositions were WC-10Co. In the case of liquid phase method, it can be observed synthesis of WC-10Co. The properties of powder produced at various temperature, were estimated from the SEM, BET and C/S analyser.
4,000원
5.
2011.08 구독 인증기관 무료, 개인회원 유료
In order to improve the weak mechanical properties of cast Mg alloys, Mg- (at%) alloy powders were synthesized using gas atomization, a typical rapid solidification process. The powders consist of fine dendrite structures less than 3 in arm spacing. In order to fabricate a bulk form, the Mg powders were compacted using magnetic pulse compaction (MPC) under various processing parameters of pressure and temperature. The effects of the processing parameters on the microstructure and mechanical properties were systematically investigated.
4,000원
6.
2011.08 구독 인증기관 무료, 개인회원 유료
Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.
4,300원
7.
2011.08 구독 인증기관 무료, 개인회원 유료
Zr-Ti alloy powders were successfully synthesized by magnesium thermal reduction of metal chlorides. The evaporated and mixed gasses of were injected to liquid magnesium and the chloride components were reduced by magnesium leading to the formation of . The released Zr and Ti atoms were then condensed to particle forms inside the mixture of liquid magnesium and magnesium chloride, which could be dissolved fully in post process by 1~5% HCl solution at room temperature. By the fraction-control of individually injected and gasses, the final compositions of produced alloy powders were changed in the ranges of Zr-0 wt.%~20 wt.%Ti and their purity and particle size were about 99.4% and the level of several micrometers, respectively.
4,000원
8.
2011.08 구독 인증기관 무료, 개인회원 유료
In this study, gradient porous Al-Cu sintered body was fabricated by powder metallurgy processing. Al-Cu powder mixtures were prepared by low energy ball milling with various milling time. After ball milling for 3h, the shape of powder mixtures changed to spherical type with size of 100~500 . Subsequently, Al-Cu powder mixtures were classified (under 150, 150~300 and over 300 ) and compacted (20, 50 and 100 MPa). Then, they were sintered at for various holding time (10, 30, 60 and 120 min) in atmosphere. The sintered bodies had 32~45% of porosity. As a result, the optimum holding time was determined to be 60 min at and sintered bodies with various porosity were obtained by controlling the compacting pressure.
4,000원
9.
2011.08 구독 인증기관 무료, 개인회원 유료
In this study, we reported the microstructure and properties of Ag- contact materials fabricated by a controlled milling process with subsequent consolidation. The milled powders were consolidated to bulk samples using a magnetic pulsed compaction process. The nano-scale phases were distributed homogeneously in the Ag matrix after the consolidation. The relative density and hardness of the Ag- contact materials were 95~96% and 89~131 Hv, respectively.
4,000원
10.
2011.08 구독 인증기관 무료, 개인회원 유료
In this research, the indium dissolution properties of the waste LCD panel powders were investigated as a function of milling time fabricated by high-energy ball milling (HEBM) process. The particle morphology of waste LCD panel powders changed from sharp and irregular shape of initial cullet to spherical shape with an increase in milling time. The particle size quickly decreased to 15 until the first minute, then decreased gradually about 6 with presence of agglomerated particles after 5 minutes, which increased gradually reaching a uniform size of 13 consist of agglomerated particles after 30 minutes. The glass recovery, after dissolution, was over 99% at initial cullet, which decreased to 90.1 and 78.6% with increasing milling time of 1 and 30 minute respectively, due to a loss in remaining powder of the surface ball and jar, as well as the filter paper. The dissolution amount of indium out of the initial cullet was 208 ppm before milling, turning into 223 ppm for the mechanically milled powder after 1 minute, and nearly 146~125 ppm with further increase in milling time because of the reaction surface decrease of powders due to agglomeration. With this process, maximum dissolving indium amount (223 ppm) could be achieved at a particle size of 15 with 1 minute of milling.
4,000원