Dye-sensitized solar cells(DSSCs) have been under investigation for the past decade due to their attractive features such as high energy conversion efficiency and low production costs. The basis for energy conversion in the injection of electrons from a photoexcited stateof a dye sensitizer into the conduction band of the nanocrystalline semiconductor upon absorption of light. It is believed that the DSSC is one of the most promising technologies to solve the significant energy problems. In this article, the development trends and perspective of DSSCs were reviewed.
Dense -20vol.%SiC composite was synthesized by high-frequency induction-heated combustion synthesis(HFIHCS) method within 2 minutes in one step from elemental powder mixture of W, Si and C. Simultaneous combustion synthesis and densification were accomplished under the combined effects of an induced current and mechanical pressure. Highly dense -20vol.%SiC with relative density of up to 97% was produced under simultaneous application of 60MPa pressure and the induced current. The average grain size of was about 5.2. The hardness and fracture toughness values obtained were 1700kg/ and , respectively.
Nano Fe-6.5wt%Si powders have been synthesized by mechano-chemical process (MCP) for an application of soft magnetic core. Owing to hard and brittle characteristics of Fe-6.5Si nano powders having large surface area, it is very difficult to reach high density more than 70% of theoretical density (~7.4 g/) by cold compaction. To overcome such problem a magnetic pulsed compaction (MPC), which is one of dynamic compaction techniques, was applied. The green density was achieved about 78% (~5.8 g/) by MPC at room temperature.
An aluminum powder compact consolidated by a powder-in sheath rolling (PSR) method was severely deformed by accumulative roll-bonding (ARB) process. The ARB process was performed up to 8 cycles at ambient temperature without lubrication. Optical microscope and transmission electron microscope observations revealed that microstructure of the ARB-processed Al powder compact is inhomogeneous in the thickness direction. The ultra-fine subgrains often reported in the ARB-processed bulky materials were also developed near surface of the Al powder compacts in this study. Tensile strength of the ARB-processed Al powder compact increased at the 1st cycle, but from the 2nd cycle it rather decreased slightly.
Four different mechanical alloying(MA) processes were employed to fabricate very fine intermetallic compound particles dispersed Al composite materials(MMC) with Al-4at.%Zr composition. Phase transformations including phase stability during MA and heat treatment processes were investigated. Part of Zr atoms were dissolved into Al matrix and part of them reacted with hydrogen produced by decomposition of PCA(methanol) to form hydride during first MA process. These hydrides disappeared when alloy powders were heat treated at . Stable dispersoids with structure were formed by heat treating the mechanically alloyed powders at . On the other hand, metastable dispersoids with structure were formed during first MA of powers with Al-25at.%Zr composition. These metastable dispersoids transformed to stable with structure when heat treated above .
Mechanical alloying using high-energy ball mill and subsequent spark plasma sintering (SPS) process was applied to Al-Fe-Cr and Al-Fe-Mo powder mixture to investigate effects of Cr and Mo addition on thermal stability of Al-Fe, and thereby to enhance its thermal stability up to . Various analytical techniques including micro-Vickers hardness test, SEM, TEM, X-ray diffractometry and corrosion test were carried out. It was found that addition of Cr and Mo to Al-Fe system played a role of grain growth inhibitor of matrix Al and some precipitates such as during SPS and subsequent heat treatment. The inhibition of grain growth resulted in increased Vickers hardness and thermal stability up to comparing to those of Al-Fe alloy system.
nano cubes with high catalase activity were synthesized by reduction of freshly prepared Cu in distilled water at and their catalase activities of were studied. Transmission electron microscopy (TEM) observation showed that most of these nanocubes were uniform in size, with the average edge length of 30 nm. Selected area electron diffraction of TEM revealed that the nanocube consisted of single crystalline , but it changed to CuO phase. The catalase activity depends on the amount of both cuprite phase and surface area.
Ag powder was prepared from by wet chemical reduction method using various reduction agent system involving , (AgCl) and Ag complex ion aqueous solution. The pure Ag powder could be prepared regardless of reaction system but the particle shape and distribution were affected very much according to the kind of reduction agents and reaction systems. The optimum reaction system for the preparation of the silver powder having the uniform particle shape and size distribution was Ag complex ion aqueous solution-reduction agent system and in particular, and as a reduction agent leaded the more uniform particle shape and size distribution
The copper oxide nano powders were synthesized by levitational gas condensation(LGC) method, and their high heterogeneous catalytic effects of oxidation of 2,3,5-trimethyl-1,4- hydroquinone (TMHQ) and catalase activity were studied. The observation of transmission electron microscopy (TEM) shows that most of these nano powders are uniform in size, with the average particle size of 35 nm. The nano powder consists of mainly , but it is aged to CuO phase. The catalytic effect which was clarified by oxidation of TMHQ and catalase depends on the amount of cuprite phase and the particle size.
Mechanical alloying using high-energy ball mill and subsequent spark plasma sintering (SPS) process was applied to understand mechanical alloying processing of Al-Fe alloy system. The thermal stability of mechanically alloyed Al-Fe alloy was intended to be enhanced by SPS process. Various analytical techniques including particle size analysis, density measurement, micro-Vickers hardness test, SEM, TEM, and X-ray diffractometry were adopted to find optimum processing conditions for mechanical alloying and subsequent SPS and to estimate thermal stability of the prepared alloy. It was found from the treatment of mechanically alloyed Al-8wt.%Fe powder mixture that needle-shaped precipitates was formed in the Al-Fe matrix, and the alloy compact showed enhanced densification and reached its full density with little loss of its fine microstructure. After heat treatment at , it was also shown that the thermal stability of Al-8wt.%Fe alloy fabricated in the present study was enhanced, which was due to its fine microstructure developed by fast densification of SPS.