간행물

한국분말야금학회지 KCI 등재 Journal of Korean Powder Metallurgy Institute

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol. 19 No. 4 (2012년 8월) 12

1.
2012.08 구독 인증기관 무료, 개인회원 유료
Effect of Cu and powder mixing with Cu-free (Nd, Dy)-Fe-B jet-milled powder on the magnetic properties of sintered magnets was investigated. The coercivity of a magnet prepared from the Cu-free (Nd, Dy)-Fe-B powder was about 10 kOe even though the alloy powder already contained some Dy (3.5 wt%). When small copper powder was blended, however, the coercivity of the magnet increased almost 100%, exhibiting about 20 kOe. On the contrary, the coercivity enhancement was moderate, about 4 kOe, when dysprosium content in the sintered magnet was simply increased to 4.9 wt% by the addition of small 3 powder.
4,000원
2.
2012.08 구독 인증기관 무료, 개인회원 유료
The characteristics of ceramics were influenced by the additives and the heat treatment that controls the microcrack behavior at grain boundaries. The effect of additives on ceramics were investigated in terms of mechanical properties and thermal expansion at high temperature. The were synthesized at , and for 2h by reaction sintering. The formation of phase was increased by additives that enhanced the volume of the microcrack that can lead to low thermal expansion. The mechanical properties of the stabilized ceramics were increased remarkably at , and due to the oneset of mechanical healing of grain-bondary microcracks at a high temperature. The amount of microcrack was decreased at lower sintering temperature that causes the increase of mechanical properties at high temperature.
4,000원
3.
2012.08 구독 인증기관 무료, 개인회원 유료
Dependence of the freeze-drying process condition on microstructure of porous W and pore formation mechanism were studied. Camphene slurries with contents of 10 vol% were prepared by milling at with a small amount of dispersant. Freezing of a slurry was done in Teflon cylinder attached to a copper bottom plate cooled at . Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green body was hydrogen-reduced at for 30 min, and sintered in the furnace at for 1 h. After heat treatment in hydrogen atmosphere, powders were completely converted to metallic W without any reaction phases. The sintered samples showed large pores with the size of about which were aligned parallel to the camphene growth direction. Also, the internal wall of large pores and near bottom part of specimen had relatively small pores with dendritic structure due to the growth of camphene dendrite depending on the degree of nucleation and powder rearrangement in the slurry.
4,000원
4.
2012.08 구독 인증기관 무료, 개인회원 유료
In this study, we mainly focus on the study of densification of gas-atomized Cu-50 wt.%In-13 wt.%Ga alloy powder without occurrence of crack during the forming process. Cu-50 wt.%In-13 wt.%Ga alloy powder was consolidated by sintering and rolling processes in order to obtain high density. The phase and microstructure of formed materials were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical microscopy (OM), respectively. Warm rolling using copper can result in the improvement of density. The specimen obtained with 80% of rolling reduction ratio at using cooper can have the highest density of .
4,000원
5.
2012.08 구독 인증기관 무료, 개인회원 유료
nanotubes were successfully synthesized using an electrospinning technique followed by calcination in air. The nanotubes were the single phase nature of and consisted of approximately 14 nm nanocrystals. SEM and TEM characterizations demonstrated that uniform hollow fibers with an average outer diameter of around 124 nm and wall thickness of around 25 nm were successfully obtained. As anode materials for lithium ion batteries, the nanotubes exhibited excellent cyclability and reversible capacity of up to 25 cycles at as compared to nanoparticles with a capacity of . Such excellent performance of the nanotube was related to the one-dimensional hollow structure which acted as a buffer zone during the volume contraction and expansion of Sn.
4,000원
6.
2012.08 구독 인증기관 무료, 개인회원 유료
foam is an important engineering material because of its exceptional high-temperature stability, low thermal conductivity, good wear resistance, and stability in hostile chemical environment. In this work, foams were designed to control the microstructure, porosity, and cell size by varying different parameters such as the amount of amphiphile, solid loading, and stirring speed. Particle stabilized direct foaming technique was used and the particles were partially hydrophobized upon the adsorption of valeric acid on particles surface. The foam stability was drastically improved when these particles were irreversibly adsorbed at the air/water interface. However, there is still considerable ambiguity with regard to the effect of process parameters on the microstructure of particle-stabilized foam. In this study, the foam with open and closed-cell structure, cell size ranging from to having single strut wall and porosity from 75% to 93% were successfully fabricated by sintering at for 2 h in air.
4,000원
7.
2012.08 구독 인증기관 무료, 개인회원 유료
The present study was focused on the analysis of the electric and thermal properties of spark plasma sintered thermoelectric material. The crystal structure, microstructure, electric and thermal properties of the sintered body were evaluated by measuring XRD, SEM, electric resistivity, Hall effect and thermal conductivity. The sintered body showed anisotropic crystal structure. The c-axis of the crystal aligned in a parallel direction with applied pressure during spark plasma sintering. The degree of the crystal alignment increased with increasing sintering temperature and sintering time. The electric resistivity and thermal conductivity of the sintered body showed anisotropic characteristics result from crystal alignment.
4,000원
8.
2012.08 구독 인증기관 무료, 개인회원 유료
In the present work, Al- composite powders were fabricated using a mechanical milling process and its milling behaviors and mechanical properties as functions of sizes ( , 500 nm and 50 nm) and concentrations (1, 3 and 10 wt.%) were investigated. For achieving it, composite powders and their compacts were fabricated using a planetary ball mill machine and magnetic pulse compaction technology. Al- composite powders represent the most uniform dispersion at a milling speed of 200 rpm and a milling time of 240 minutes. Also, the smaller particles were presented, the more excellent compositing characteristics are exhibited. In particular, in the case of the 50 nm added compact, it showed the highest values of compaction density and hardness compared with the conditions of and 500 nm additions, leading to the enhancement its mechanical properties.
4,000원
9.
2012.08 구독 인증기관 무료, 개인회원 유료
In this study, voltammetry system for realizing high sensitivity nano-labeled sensor of detecting heavy metals was designed, and optimal system operating conditions were determined. High precision digital to analog converter (DAC) circuit was designed to control applied unit voltage at working electrode and analog to digital converter (ADC) circuit was designed to measure the current range of at counter electrode. Main control unit (MCU) circuit for controlling voltammetry system with 150 MHz clock speed, main memory circuit for the mathematical operation processing of the measured current value and independent power circuit for analog/digital circuit parts to reduce various noise were designed. From result of voltammetry system operation, oxidation current peaks which are proportional to the concentrations of Zn, Cd and Pb ions were found at each oxidation potential with high precision.
4,000원
10.
2012.08 구독 인증기관 무료, 개인회원 유료
The purpose of our study was to develop the fabrication method of porous diatomite ceramics with a porosity gradient by centrifugal molding. The processing variables of centrifugal molding were derived from Stoke's law of sedimentation, which were the radius of the particles, the acceleration due to centrifugal molding and the dynamic viscosity of the slurry. And these could be controlled by ball-milling conditions, centrifugal conditions, and the addition of methyl cellulose, respectively. The effects of processing conditions on the gradient pore structure of diatomite were investigated by particle size analysis, scanning electron microscope, and mercury porosimeter.
4,000원
11.
2012.08 구독 인증기관 무료, 개인회원 유료
Nanocrystalline powder could be synthesized by solid-state reaction using the mixture which was prepared by a high energy milling process in a bead mill for and nanocrystalline powders mixture. Effect of the milling time on the powder characteristic of the synthesized powder was investigated. Nanocrystalline with a particle size of 50 nm was obtained at . High tetragonal powder with a tetragonality(=c/a) of 1.009 and a specific surface area of was acquired after heat-treatment at for 2 h. High energy ball milling was effective in decreasing the reaction temperature and increasing the tetragonality.
4,000원
12.
2012.08 구독 인증기관 무료, 개인회원 유료
In this study, Cu-5Ni-10Sn(wt%) spinodal alloy was manufactured by gas atomization spray forming, and the microstructural features and mechanical properties of Cu-5Ni-10Sn alloy have been investigated during homogenization, cold working and age-hardening. The spray formed Cu-5Ni-10Sn alloy consisted of an equiaxed microstructure with a mixture of solid solution -(CuNiSn) grains and lamellar-structure grains. Homogenization at and subsequent rapid quenching formed a uniform solid solution -(CuNiSn) phase. Direct aging at from the homogenized Cu-5Ni-10Sn alloy promoted the precipitation of finely distributed ' or phase throughout the matrix, resulting in a significant increase in microhardness and tensile strength. Cold working prior to aging was effective in strengthening Cu-5Ni-10Sn alloy, which gave rise to a maximum tensile strength of 1165 MPa. Subsequent aging treatment slightly reduced the tensile strength to 1000-1100 MPa due to annealing effects.
4,000원