In an attempt to optimize the magnetic properties of (Nd, Dy)-Fe-B sintered magnets, hydrogenation and post-sintering heat treatment processes were investigated at various hydrogenation temperatures and heat treatment temperatures. The coercivity of (Nd, Dy)-Fe-B sintered magnets hydrogenated at increased to about 1.2 kOe without any detrimental effect on the remanence. Moreover, the coercivity of the magnets was enhanced further by a consecutive and step heat treatment. These results eventually leaded to the reduction of the Dy content in a high coercive (> 30 kOe) (Nd, Dy)-Fe-B sintered magnets, as much as 10%.
The evolution of sinterability, microstructure and mechanical properties for the spark plasma sintered(SPS) Ti from commercial pure titanium(CP-Ti) was studied. The densification of titanium with 200 mesh and 400 mesh pass powder was achieved by SPS at under 10 MPa pressure and the flowing +Ar mixed gas atmosphere. The microstructure of Ti sintered up to consisted of equiaxed grains. In contrast, the growth of large elongated grains was shown in sintered bodies at with the 400 mesh pass powder and the lamella grains microstructure had been developed by increasing sintering temperature. The Vickers hardness of 240~270 HV and biaxial strength of 320~340 MPa were found for the specimen prepared at .
Nanostuctured TiAl powder was synthesized by high energy ball milling. A dense nanostuctured TiAl was consolidated using pulsed current activated sintering method within 2 minutes from mechanically synthesized powders of TiAl and horizontally milled powders of Ti+Al. The grain size and hardness of TiAl sintered from horizontally milled Ti+Al powders and high energy ball milled TiAl powder were 35 nm, 20 nm and 450 kg/, 630 kg/, respectively.
In the present work, bismuth nanopowders with various particle size distributions were synthesized by controlling argon (Ar) gas flow rate and chamber pressure of a gas condensation (GC) apparatus. From the analyses of transmission electron microscopy (TEM) images and nitrogen gas adsorption results, it was found that as Ar gas flow rate increased, the specific surface area of bismuth increased and the average particles size decreased. On the other hand, as the chamber pressure increased, the specific surface area of bismuth decreased and the average particles size increased. The optimum gas flow rate and chamber pressure for the maximized electrochemical active surface area were determined to be 8 L/min and 50 torr, respectively. The bismuth nanopowders synthesized at the above condition exhibit 13.47 of specific surface area and 45.6 nm of average particles diameter.
Titanium powders have been usually produced by de-hydrogenating treatment in vacuum with titanium hydride () powders prepared by milling of hydrogenated sponge titanium, . The higher stoichiometry of x in , whose maximum value is 2, is achieved, crushing behavior is easier. powder can be, therefore, easy to manufactured leading to obtain higher recovery factor of it. In addition, contamination of the powder can also minimized by the decrease of milling time. In this study, the hydrogenation behavior of sponge titanium was studied to find the maximum stoichiometry. The maximum stoichiometry in hydride formation of sponge titanium could be obtained at for 2 hrs leading to the formation of and the treating temperatures lower or higher than caused the poor stoichiometries by the low hydrogen diffusivity and un-stability of , respectively. Such experimental behavior was compared with thermodynamically calculated one. The hydrogenated sponge was fully ball-milled under -325 Mesh and the purity of pure titanium powders obtained by de-hydrogenation was about 99.6%.
Aqueous gold nanoparticle dispersion was synthesized by chemical reduction method using diethanolamine as reducing agent and polyethyleneimine as dispersion stabilizer. The synthesis conditions for the stable dispersion of the gold nanoparticle suspension were determined by changing the amount of the reducing agent and dispersant during the wet chemical synthesis procedures. The face centered cubic lattice structure of the gold nanoparticles was confirmed by using X-ray diffraction and the morphologies of the nanoparticles were observed by transmission electron microscope. The synthesized gold nanoparticle dispersion was concentrated by evaporating the dispersion medium at room temperature followed by the addition of ethyleneglycol as humectant for the increase of the elastic properties to obtain gold nanoparticle inks for direct ink writing process. The line patterns were obtained with the gold nanoparticle inks during the writing procedures and the morphologies of the fine patterns were observed by scanning electron microscope.
The effects of doping on the crystal structure, ferroelectric, and piezoelectric properties of (K,Na) (KNN) ceramics have been investigated. was found to be effective in enhancing the densification and grain growth during sintering. X-ray diffraction analysis indicated that Mn ions substituted B-site Nb ions up to 2 mol%, however, further doping induced unwanted secondary phases. In comparison with undoped KNN ceramics, the well developed microstructure and the substitution to B-sites in 2 mol% Mn-doped KNN ceramics resulted in significant improvements in both piezoelectric coupling coefficient and electromechanical quality factor.
The effects of high energy ball-milling (HEBM) on the sintering behavior and piezoelectric properties of 0.1 wt% doped 0.8Pb()-0.2Pb() (PMN-PZT) ceramics were investigated. It was found that HEBM treatment was quite effective to reduce the average particle size down to 300 nm, leading to increased density as well as enhanced piezoelectric properties of a sintered specimen even though prolonged HEBM resulted in unwanted secondary phases that caused a degradation of piezoelectric properties. The dielectric constant (), piezoelectric coupling factor () and piezoelectric constant of 0.1 wt% doped PMN-PZT ceramics prepared via HEBM for 10 h reached 2040, 0.68 and 554 pC/N, respectively.
Titanium dioxide (), which is one of the most basic materials in our daily life, plays a key role for environment purification. We synthesized nanoparticles by the hydrolysis reactions of titanium tetraisopropoxide using as a peptizing agent or as a chelating agent in the sol-gel method. The powder consisted of a rod shape or a spherical shape according to the concentration and kind of acid. The physical properties of nanoparticles were investigated with X-ray diffraction, SEM, BET analysis, and UV-Vis spectrophotometer.