has the characteristic is controlling the inhibition or promotion of particle growth by adsorbing onto specific facets of platinum nanoparticles. Therefore, in this study, was added to control the shape of platinum nanoparticles during the liquid phase reduction process. Consequently, platinum cubes were synthesized when of 1.1 mol% (with respect to the Pt concentration) was added into the solution. Platinum octahedrons were synthesized when 32 mol% (with respect to the Pt concentration) was added into the solution. These results demonstrate that the metal salt , effectively controlled the relative growth rates of each facet of Pt nano particles.
This paper describes the spherical ammonium diuranate gel particles which are the intermediated material of the microsphere for an VHTR(very high temperature reactor) nuclear fuel. The characteristics of the intermediate-ADU gel particles prepared by AWD(ageing, washing, and drying) and FB(fluidized-bed) apparatus were examined and compared in a sol-gel fabrication process. The electrical conductivity of washing filtrate from the FB treating and the surface area of dried-ADU gel particles were higher than those of AWD treating. Also, an internal pore volume in dried-ADU gel particles showed a more decrease in AWD treatment than FB treatment because of decomposition of PVA affected by the washing time. However, the internal microstructures of ADU gel particles were similar regardless of the process variation.
Recovery of copper powder from copper chloride solution used in leaching process was carried out using a cementation method. Cementation is a simple and economical process, necessitating less energy compared with other recovery methods. Cementation utilizes significant difference in standard reduction potential between copper and iron under standard condition. In the present research, Cementation process variables of temperature, time, and added amount of iron scraps were optimized by using design of experiment method and individual effects on yield and efficiency of copper powder recovery were investigated using bench-scale cementation reaction system. Copper powders thus obtained from cementation process were further characterized using various analytical tools such as XRF, SEM-EDS and laser diffraction and scattering methods. Cementation process necessitated further purification of recovered copper powders and centrifugal separation method was employed, which successfully yielded copper powders of more than 99.65% purity and average in size.
The quartz glasses were prepared by sintering of fumed silica powders and the effect of OH concentration on their surface on sintering was studied. Through the firing process, the fumed silica was crystallized from 1180 to region. The amount of hydroxyl group decreased with increase in calcination temperature and consequently the crystallization was prevented. A transparent quartz glass was obtained from fumed silica, previously calcined at , by the sintering at for 1 h.
This paper introduces an effect of a preparing -Ag composite on its mechanical properties and microstructure. In present study, -Ag was prepared by reduction-deposition route and wetting dispersive milling method, respectively. Two type of Ag powders (nano Ag and micron Ag size, respectively) were dispersed into powder during wetting dispersive milling in D.I. water. Each sample was sintered at for 2hr in atmosphere, and then several mechanical tests and analysis of microstructure were carried out by bending test, hardness, fracture toughness and fracture surface microstructure. As for microstructure, the Ag coated showed homogeneously dispersed Ag in in where pore defect did not appear. However, -nano Ag and -micro Ag composite appeared Ag aggregation and its pore defect, which carried out low mechanical property and wide error function value.
Nano Pd spot-coated active carbon powders were synthesized by a hydrothermal-attachment method (HAA) using PVP capped Pd colloid in a high pressure bomb at , 450 psi, respectively. The PVP capped Pd colloid was synthesized by the precipitation-redispersion method. PVP capped Pd nano particles showed the narrow size distribution and their particle sizes were less than 8nm in diameter. In the case of nano Pd-spot coated active carbon powders, nano-sized Pd particles were adhered in the active carbon powder surface by HAA method. The component of Pd was homogeneously distributed on the active carbon surface.
With increase in operating temperature of gas turbine for higher efficiency, it is necessary to find new materials of TBC for replacement of YSZ. Among candidate materials for future TBCs, zirconate-based oxides with pyrochlore and fluorite are prevailing ones. In this study, phase structure and thermal conductivities of oxide system are investigated. system are comprised by selecting as A-site ions and as B-site ion in pyrochlore structures. With powder mixture from each oxide, oxides are fabricated via solid-state reaction at . Either pyrochlore or fluorite or mixture of both appears after heat treatment. For the developed phases along compositions, thermal conductivities are examined, with which the potential of compositions for TBC application is also discussed.
A new manufacturing process of Fe-Cr-Al powder porous metal was attempted. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on PU (Polyurethane) foam through the electrospray process. And then degreasing and sintering processes were conduced. In order to examine the effect of sintering temperature in process, pre-samples were sintered for two hours at temperatures of , , , and , respectively, in atmospheres. A 24-hour TGA (thermo gravimetric analysis) test was conducted at in a 79% +21% to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing sintering temperature (2.57% oxidation weight gain at sintered specimen). The high temperature oxidation mechanism of newly manufactured Fe-Cr-Al powder porous metal was also discussed.
The quantum dots (QD) have unique electrical and optical properties due to quantum dot confinement effect. The optical properties of QDs are decided by various synthesis conditions. In a prior QDs study, a study on the QDs size with synthesis condition such as synthesis time and temperature is being extensively researched. However, the research on QDs size with composition ratio has hitherto received scant attention. In order to evaluate the ratio dependence of CdSe crystal, synthesis ratio of Se precursor is changed from 16.7 mol%Se to 44 mol%Se. As the increasing Se ratio, the band gap was increased. This is caused by red shift of emission. We confirmed optical property of CdSe QDs with composition ratio.
In order to fabricate the porous Mo with controlled pore characteristics, unique processing by using powder as the source and camphene as the sublimable material is introduced. Camphene-based 15 vol% slurries, prepared by milling at with a small amount of dispersant, were frozen at . Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green body was hydrogen-reduced at , and sintered at for 1 h. After heat treatment in hydrogen atmosphere, powders were completely converted to metallic W without any reaction phases. The sintered samples showed large pores with the size of about which were aligned parallel to the camphene growth direction. Also, the internal wall of large pores and near bottom part of specimen had relatively small pores due to the difference in the camphene growth rate during freezing process. The size of small pores was decreased with increase in sintering temperature, while that of large pores was unchanged. The results are strongly suggested that the porous metal with required pore characteristics can be successfully fabricated by freeze-drying process using metal oxide powders.
Nowadays, research and development on quantum dot have been intensively and comprehensively pursued worldwide in proportion to concurrent breakthrough in the field of nanotechnology. At present, quantum dot technology forms the main interdisciplinary basis of energy, biological and photoelectric devices. More specifically, quantum dot semiconductor is quite noteworthy for its sub-micro size and possibility of photonic frequency modulation capability by controlling its size, which has not been possible with conventionally fabricated bulk or thin film devices. This could lead to realization of novel high performance devices. To further understand related background knowledge of semiconductor quantum dot at somewhat extensive level, a review paper is presently drafted to introduce basics of (semiconductor) quantum dot, its properties, applications, and present and future market trend and prospect.