간행물

한국분말야금학회지 KCI 등재 Journal of Korean Powder Metallurgy Institute

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol. 19 No. 2 (2012년 4월) 9

1.
2012.04 구독 인증기관 무료, 개인회원 유료
Magnetic properties and the microstructures of magnets prepared by spark plasma sintering were investigated in order to enhance magnetic properties by grain size control. Nd-Fe-B magnets were fabricated by the spark plasma sintering under 30 MPa at various temperatures. The grain size was effectively controlled by the spark plasma sintering and it was possible to make Nd-Fe-B magnets with grain size of 5.9 .
4,000원
2.
2012.04 구독 인증기관 무료, 개인회원 유료
This study investigated the effects of annealing environment for the densification and purification properties of pure titanium coating layer manufactured by cold spraying. The annealing was conducted at /1 h and three kinds of environments of vacuum, Ar gas, and mixture gas were controlled. Cold sprayed Ti coating layer (as sprayed) represented 6.7% of porosity and 228 HV of hardness, showing elongated particle shapes (severe plastic deformation) perpendicular to injection direction. Regardless of gas environments, all thermally heat treated coating layers consisted of pure -Ti and minimal oxide. Vacuum environment during heat treatment represented superior densification properties (3.8% porosity, 156.7 HV) to those of Ar gas (5.3%, 144.5 HV) and mixture gas (5.5%, 153.1 HV). From the results of phase analysis (XRD, EPMA, SEM, EDS), it was found that the vacuum environment during heat treatment could be effective for reducing oxide contents (purification) in the Ti coating layer. The characteristic of microstructural evolution with heat treatment was found to be different at three different gas environments. The controlling method for improving densification and purification in the cold sprayed Ti coating material was also discussed.
4,000원
3.
2012.04 구독 인증기관 무료, 개인회원 유료
Tool steels serve a large range of applications including hot and cold workings of metals and injection mouldings of plastics or light alloys. The high speed steels (HSS) are specifically used as cutting tools and wear parts because it has high strength, wear resistance and hardness along with appreciable toughness and fatigue resistance. From the view of HSS microstructure, it can be described as metallic matrix composites formed by a ferrous with a dispersion of hard and wear resistant carbides. The experimental specimens were manufactured using the PIM with T42 powders (50~80 vol.%) and polymer (20~50 vol.%). The green parts were debinded in n-hexane solution at for 8 hours and thermal debinded at an mixed gas atmosphere for 8 hours. Specimens were sintered in high vacuum ( Torr) and various temperatures.
4,000원
4.
2012.04 구독 인증기관 무료, 개인회원 유료
The Fe-based self-fluxing alloy powders and TiC particles were ball-milled and subsequently compacted and sintered at various temperatures, resulting in the TiC particle-reinforced Fe self-fluxing alloy hybrid composite, and the microstructure and micro-hardness were investigated. The initial Fe-based self-fluxing alloy powders and TiC particles showed the spherical shape with a mean size of approximately 80 and the irregular shape of less than 5 , respectively. After ball-milling at 800 rpm for 5 h, the powder mixture of Fe-based self-fluxing alloy powders and TiC particles formed into the agglomerated powders with the size of approximately 10 that was composed of the nanosized TiC particles and nano-sized alloy particles. The TiC particle-reinforced Fe-based self-fluxing alloy hybrid composite sintered at 1173 K revealed a much denser microstructure and higher micro-hardness than that sintered at 1073 K and 1273 K.
4,000원
5.
2012.04 구독 인증기관 무료, 개인회원 유료
The sintering behaviors and process parameters of some compounds (carbides, oxides, sulfides, borides) were investigated experimentally. These compounds were successfully consolidated and showed high densities. Some unique phenomena such as retardation of grain growth, suppression of thermal decomposition and maintenance of initial non-equilibrium phases, were observed by the proper control of process in spark sintering.
4,000원
6.
2012.04 구독 인증기관 무료, 개인회원 유료
P/M coppers are subjected to the isothermal compression tests at the strain rate ranging from 0.01 to 10.0 and the temperature from 200 to . The processing map reveals the dynamic recrystallization (DRX) domain in the following temperature and strain rate ranges: and 0.01-10.0 , respectively. In the domain, the region at temperature of and strain rate of shows peak efficiency. From the kinetic analysis, the apparent activation energy in the DRX domain is 190.67 kJ/mol and it suggests that lattice self-diffusion is the rate controlling mechanism.
4,000원
7.
2012.04 구독 인증기관 무료, 개인회원 유료
This paper describes the manufacturing process of tilting pad gas bearing with a diameter of 5 mm and a length of 0.5-1 mm for power MEMS (Micro Electomechanical Systems) applications. The bearing compacts with nanopowder feedstock were prepared by Ni-metal mold with 2-mold system using LIGA process. The effect of the manufacturing conditions on sintering properties of nanopowder gas bearing was investigated. In this work, Fe-45 wt%Ni nanopowder with an average diameter of 30-50 nm size was used as starting material. After mixing the nanopowder and the wax-based binders, the amount of powder was controlled to obtain the certain mixing ratio. The nanopowder bearing compacts were sintered with 1-2 hr holding time under hydrogen atmospheres and under temperatures of to . Finally, the critical batch of mixed powder system was found to be 70% particle fraction in total volume. The maximum density of the sintered bearing specimen was about 94% of theoretical density.
4,000원
8.
2012.04 구독 인증기관 무료, 개인회원 유료
The effects of nano addition to superconducting properties of processed superconductors was examined. 0.1 wt.% and 1 wt.% nano powders were mixed with boron and magnesium powders by ball milling. The powder mixtures were made into pellets by uniaxial pressing. The pellets were heat-treated at in argon atmosphere for formation. It was found by powder X-ray diffraction that the raw powders were completely converted into after the heat treatment. The superconducting transition temperature () and critical current density (), estimated from susceptibility-temperature and curves, were decreased by nano addition. The and decrease by nano addition are attributed to the incorporation of iron and carbon with lattices (Fe substitution for Mg and C substitution for B) due to the high reactivity of the nano powder.
4,000원