간행물

한국분말야금학회지 KCI 등재 Journal of Korean Powder Metallurgy Institute

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol. 19 No. 3 (2012년 6월) 10

1.
2012.06 구독 인증기관 무료, 개인회원 유료
Copper composite materials have attracted wide attention for energy applications. Especially has a desirable direct band gap of 1.5 eV, which is well matched with the solar spectrum. nanoparticles could make it possible to develop color-tunable nanoparticle emitter in the near-infrared region (NIR) for energy application and bio imaging sensors. In this paper, nanoparticles were successfully synthesized by thermo-decomposition methods. Surface modification of nanoparticles were carried out with various semiconductor materials (CdS, ZnS) for enhanced optical properties. Surface modification and silica coating of hydrophobic nanoparticles could be dispersed in polar solvent for potential applications. Their optical properties were characterized by UV-vis spectroscopy and photoluminescence spectroscopy (PL). The structures of silica coated were observed by transmission electron microscopy (TEM).
4,000원
2.
2012.06 구독 인증기관 무료, 개인회원 유료
In this study, fine cathode materials and were synthesized using the simple, convenient process of mechanical alloying (MA). In order to improve the cell properties, wet milling processes were conducted using low-energy ball milling to decrease the mean particle size of both materials. The cells of Na/ and Na/ show a high initial discharge capacity of 425 mAh/g and 577 mAh/g respectively using wet milled powder particles, which is much larger than commercial ones, providing some potential as new cathode materials for rechargeable sodium-ion batteries.
4,000원
3.
2012.06 구독 인증기관 무료, 개인회원 유료
A novel PM (powder metallurgy) steel for automotive power-train gear components was developed to reduce manufacturing cost, while meeting application requirements. The high-density PM steel was manufactured by mixing using special Cr-Mo atomized iron powders, high-pressure compaction, and sintering. Tensile strength, charpy impact, bending fatigue, and contact fatigue tests for the PM steel were carried out and compared to conventional forged steel. Pinion gears for auto-transmission were also manufactured by helical pressing, sintering, and surface densification process. In order to evaluate the durability of the PM parts, auto-transmission durability tests were performed using dynamometer tests. Results showed that the PM steel fulfilled the requirements for pinion gears indicating suitable tensile, bending fatigue, contact fatigue strengths and improved gear tooth profile. The PM gears also showed good performance during the transmission durability tests. As a result, the PM gears showed significant potential to replace the conventional forged steel gears manufactured by tooth machining (hobbing, shaving, and grinding) processes.
4,000원
4.
2012.06 구독 인증기관 무료, 개인회원 유료
was successfully formed on a Ti specimen by MAO (Micro-Arc-Oxidation) method treated in electrolyte. This study deals with the influence of voltage and working time on the change of surface microstructure and phase composition. Voltage affected the forming rate of the oxidized layer and surface microstructure where, a low voltage led to a high surface roughness, more holes and a thin oxidized layer. On the other hand, a high voltage led to more dense surface structure, wider surface holes, a thick layer and fewer holes. Higher voltage increases photocatalytic activity because of better crystallization of the oxidized layer and good phase composition with anatase and rutile , which is able to effectively separate excited electrons and holes at the surface.
4,000원
5.
2012.06 구독 인증기관 무료, 개인회원 유료
In this work, powder metallurgy and severe plastic deformation by high-pressure torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. Pure Cu powders were mixed with 5 and 10 vol% diamonds and consolidated into disc-shaped samples at room temperature by HPT at 1.25 GPa and 1 turn, resulting in ultrafine grained metallic matrices embedded with diamonds. Neither heating nor additional sintering was required with the HPT process so that in situ consolidation was successfully achieved at ambient temperature. Significantly refined grain structures of Cu metallic matrices with increasing diamond volume fractions were observed by electron backscatter diffraction (EBSD), which enhanced the microhardness of the Cu-diamond composites.
4,000원
6.
2012.06 구독 인증기관 무료, 개인회원 유료
Mass production-capable powder was synthesized for use as cathode material in state-of-the-art lithium-ion batteries. These batteries are main powder sources for high tech-end digital electronic equipments and electric vehicles in the near future and they must possess high specific capacity and durable charge-discharge characteristics. Amorphous silicone was quite superior to crystalline one as starting material to fabricate silicone oxide with high reactivity between precursors of sol-gel type reaction intermediates. The amorphous silicone starting material also has beneficial effect of efficiently controlling secondary phases, most notably . Lastly, carbon was coated on powders by using sucrose to afford some improved electrical conductivity. The carbon-coated cathode material was further characterized using SEM, XRD, and galvanostatic charge/discharge test method for morphological and electrochemical examinations. Coin cell was subject to 1.5-4.8 V at C/20, where 74 mAh/g was observed during primary discharge cycle.
4,000원
7.
2012.06 구독 인증기관 무료, 개인회원 유료
An attempt was made to evaluate creep reliability of two commercial Ni-based superalloys by using ultrasonic wave. The materials include fine-grained PM alloy fabricated by mechanical alloying and subsequent hot isostatic pressing, and IN738LC cast alloy with a grain size of a few cm. Microstructural parameters (fraction of creep cavity and size of precipitates) and ultrasonic parameters (velocity, attenuation) were measured to try to find relationships between them. Ultrasonic velocity decreased with creep cavity formation in PM alloy. On the other hand, no distinct changing trend of ultrasonic velocity was observed for IN738LC alloy. Ultrasonic attenuation was found to have a linear correlation with the size of precipitates and was suggested as a potential parameter for monitoring creep reliability of IN738LC alloy.
4,000원
8.
2012.06 구독 인증기관 무료, 개인회원 유료
YAG:Ce yellow phosphor particles were synthesized by spray pyrolysis with changing the solution properties and their luminous properties, crystal structure, and morphological changes were studied by using PL measurement, XRD, and SEM analysis. It was clear that the solution properties significantly affected the crystal phase, crystallite size, the PL intensity, and the morphology of YAG:Ce particles. At low calcination temperature, the addition of urea only to the spray solution was helpful to form a pure YAG phase without any impurity phases, as the result, the highest luminescence intensity was achieved at the calcination temperature of . When the calcination temperatures were larger than , however, the YAG particles prepared without any additive showed the highest luminescent intensity. Regardless of the solution conditions, the emission intensity of YAG:Ce particles prepared by spray pyrolysis showed a linear relation with the crystallite size. In terms of the morphology of YAG:Ce particles, the addition of both DCCA and to the spray solution was effective to prepare a spherical and dense structured YAG particles.
4,000원
9.
2012.06 구독 인증기관 무료, 개인회원 유료
In this research, the coating behavior of Mg and Fe desulfurization powder fabricated by low energy and conventional planetary mill equipment was investigated as a function of milling time, which produces uniform Fe coated powders due to milling energy. Since high energy ball milling results in breaking the Fe coated Mg powders into coarse particles, low energy ball milling was considered appropriate for this study, and can be implemented in desulfurization industry widely. XRD and FE-SEM analyses were carried out to investigate the microstructure and distribution of the coating material. The thickness of the Fe coating layer reaches a maximum of 14 at 20 milling hours. The BCC structures of Fe particles are deformed due to the slip system of Fe coated Mg particles.
4,000원