간행물

한국분말야금학회지 KCI 등재 Journal of Korean Powder Metallurgy Institute

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol. 12 No. 4 (2005년 8월) 12

1.
2005.08 구독 인증기관 무료, 개인회원 유료
1990년도 초반에 개발되어 나노분말의 제조 공정으로 집중적으로 연구되어온 화학기상응축공정은 고강도용 나노분말 소재이외에 기능성 자성재료로의 응용에 주로 이용되어 왔다. 최근에는 이러한 응용이외에 나노분말의 표면을 다양한 이종 소재로 응용하고자하는 나노캡슐(혹은 core/shell)화 제조 공정으로 진보되어 다양한 합금 시스템으로 발전하게 되었다. 특히 최근 Particles 2005, Surface Modification in Particle Tech
4,000원
2.
2005.08 구독 인증기관 무료, 개인회원 유료
Titanium dioxide was prepared by Polymer Complex Solution Method(PCSM) according to the mole ratio of Titanium (IV) isopropoxide(TTIP)/solvent and polymer(Poly Ethylene Glycol). Polymer electrolytes were usually made by dispersing preproduced ceramic nanoparticles in a polymer matrix. Using this method, pure and nano-sized powder was synthesized through a simple procedure and polymer entrapment route. At the optimum amount of the polymer, the titanium ions are dispersed in solution and a homogeneous polymeric network is formed. The maximum intensity of anatase phase of was achieved by calcining at for 2h. The synthesized powders were nano-sized and the average size was about 50nm. Anatase/Rutile ratio of the synthesized was 70%/30%
4,000원
3.
2005.08 구독 인증기관 무료, 개인회원 유료
Abstract Direct solid state synthesis by hot pressing has been applied in order to produce high efficiency bulk specimens. Single phase with 98.5% of theoretical density was successfully produced by direct hot pressing of elemental powders containing 1.2 at.% excess Zn. Thermoelectric properties as a function of temperature were investigated from room temperature to 600 K and compared with results of other studies. Transport properties at room temperature were also evaluated. Thermoelectric properties of single phase materials produced by direct synthesis were measured and are comparable to the published data. Direct solid state synthesis by hot pressing provides a promising processing route in this material
4,000원
4.
2005.08 구독 인증기관 무료, 개인회원 유료
In order to fabricate complex-shaped polycrystalline ceramics by sintering, organic binders are usually pre-mixed with ceramic powders to enhance the formability during the shape forming process. These organic binders, however, must be eliminated before sintering so as to eliminate the possibilities of poor densification and unusual grain growth during sintering. The present work studies the effect of binder addition on grain growth behavior during sintering of piezoelectric ceramics. The microstructures of the sintered samples were examined for various heating profiles and debinding schedules of the binder removal process. Addition of Polyvinyl butyral(PVB) binder promoted abnormal grain growth especially in incompletely debinded regions. Residual carbon appears to change the grain shape from comer-rounded to faceted and enhance abnormal grain growth
4,000원
5.
2005.08 구독 인증기관 무료, 개인회원 유료
Transition metal doped nanostructured powders were synthesized by mechanical alloying(MA) to shift the adsorption threshold into the visible light region. The synthesized powders were characterized by XRD, SEM, TEM and BET for structural analysis, UV-Vis and photoluminescence spectrum for the optical study. Also, photocatalytic abilities were evaluated by decomposition of 4-chlorophenol(4CP) under ultraviolet and visible light irradiations. Optical studies showed that the absorption wavelength of transition metal ions doped powders moved to visible light range, which was believed to be induced by the energy level change due to the doping. Among the prepared powders, doped powders, showed excellent photooxidative ability in 4CP decomposition
4,000원
6.
2005.08 구독 인증기관 무료, 개인회원 유료
Nanostructured and composite powders have been prepared by mechanochemical reaction from mixtures of Ti, BN, and powders. The raw materials have reacted to form a uniform mixture of TiN, and or depending on the amount of used in the starting mixtures, and the reaction proceeded through so-called mechanically activated self-sustaining reaction (MSR). Fine TiN and crystallites less than a few tens of nanometer were homogeneously dispersed in the amorphous or matrix after milling for 12 hours. These amorphous matrices became crystalline phases after annealing at high temperatures as expected, but the original microstructure did not change significantly
4,000원
7.
2005.08 구독 인증기관 무료, 개인회원 유료
In this study, the ZnS composite powders for host material in phosphor was synthesized in situ by mechanical alloying. As the mechanical alloying time increases, particle size of ZnS decreases. ZnS powders of in a mean size was fabricated by mechanical alloying for 10h. The crystal structures of ZnS powders were investigated by X-ray diffraction and the photo-luminescence properties was evaluated with the optical spectra analyzer. The steady state condition of mechanically alloyed ZnS was obtained as a mean particle size of in 5h milling. The sphalerite and wurtize structures coexist in the ZnS mechanically alloyed for 5h. The ZnS powder mechanically alloyed for 10h grows to the sphalerite structure. And the strong emission peaks of ZnS are observed at 480 nm wave length at the powders of mechanically alloyed for 10h, but the sphalerite and wurtize structures in ZnS coexist and emission peaks are not appeared at the powders of mechanically alloyed for 10h.
4,000원
8.
2005.08 구독 인증기관 무료, 개인회원 유료
ZnO nanostructures with various shapes were synthesized under ambient pressure condition by a wet chemical reaction method. Nanorods of ZnO with hexagonal cross-section and their aggregates with radiate shape were synthesized. Precursor concentration affected considerably the shape evolution of ZnO nanorods. Low precursor concentration was proved to be more preferable to the growth of ZnO nanorods, which is attributed to the intrinsic characteristics of chemical reaction in the synthesis of ZnO from zinc compounds.
4,000원
10.
2005.08 구독 인증기관 무료, 개인회원 유료
In order to improve mechanical properties, the hypereutectic Al-20 wt%Si based prealloy powder was prepared by gas atomization process. Microstructure and compressibility of the atomized Al-Si powder were investigated. The average powder size was decreased with increasing the atomization gas pressure. Size of primary Si particles of the as-atomized powder was about . The as-atomized Al-Si powder such as AMB 2712 and AMB 7775 to increase compressibility and sinterability. Relative density of the mixed powder samples sintered at was reached about 96% of a theoretical density.
4,000원
11.
2005.08 구독 인증기관 무료, 개인회원 유료
Various kinds of Mg-Zn-Ca base alloys were rapidly quenched via melt spinning process. The meltspun ternary and quaternary alloy ribbons were heat-treated, and then the effects of additional elements on age hardening behavior and phase change of precipitates were investigated using Vickers hardness tester, XRD, and TEM equipped with EDS system. In ternary alloys, age hardening was mostly due to the distribution of and . The stable phases of precipitates were varied according to the aging temperature and the alloy composition. With the increase of Ca content, precipitates were detected more than precipitates. In quaternary alloys, the precipitates taken from Mg-Zn-Ca-Co were identified as new quaternary phase, whereas those taken from Mg-Zn-Ca-Zr as MgZnCa containing Zr. In general, the ternary alloy showed higher peak hardness and thermal stability than the quaternary considering the total amounts of the solutes. It implies that the structure of precipitate should be controlled to have the coherent interface with the Mg matrix.
4,000원