FIB와 나노메니퓰레이터를 이용한 다양한 nano manufacturing을 통해 단일 나노선 소자제작 및 평가가 가능하였으며 또한 나노물질 자체의 전기적, 기계적 특성 평가를 수행할 수 있었다. 나노메니퓰레이터를 나노선에 직접 접촉시켜 전기적 특성을 평가하는 기술은 STA 등과 함께 사용될 때 높은 신뢰도를 갖는 신호를 얻을 수 있었다. 특히, 이를 이용한 나노 소재 특성 평가기술은 소자제작 시간을 단축시킬 수 있고 패턴닝으로부터 화학적 오염을 줄일
본 고에서는 최근 재료분석에 활발히 응용되고 있는 EELS 분석장비의 원리와 응용 분야 등에 대해 검토하였다. EELS를 이용하여 수행할 수 있는 주요 응용분야로는 원소의 정성 및 정량분석, 원소 및 화학 맴핑, 화학물의 결함구조를 알 수 있는 전자구조(DOS)에 대한 힌트 등이 있으며, 점차 재료의 근본 적인 성질을 추출할 수 강력한 분석기가 되고 있다. 또한 원소를 분석하고 맹핑하는데 걸리는 시간이 수초에서 수분 이하의 시간으로 매우 짧아 전자빔에
Nanopowders of titanium dioxide incorporating the transition metal element(s) were synthesized by flame synthesis method. Single element among Fe(III), Cr(III), and Zn(II) was doped into the interior of crystal; bimetal doping of Fe and Zn was also made. The characteristics of transition-metal-doped nanopowders in the particle feature, crystallography and electronic structures were determined with various analytical tools. The chemical bond of Fe-O-Zn was confirmed to exist in the bimetal-doped nanopowders incorporating Fe-Zn. The transition element incorporated in the was attributed to affect both Ti 3d orbital and O 2p orbital by NEXAFS measurement. The bimetal-doped nanopowder showed light absorption over more wide wavelength range than the single-doped nanopowders
ZnO nanostructures with various shapes were synthesized under ambient pressure condition by a wet chemical reaction method. Nanorods of ZnO with hexagonal cross-section and their aggregates with radiate shape were synthesized. Precursor concentration affected considerably the shape evolution of ZnO nanorods. Low precursor concentration was proved to be more preferable to the growth of ZnO nanorods, which is attributed to the intrinsic characteristics of chemical reaction in the synthesis of ZnO from zinc compounds.
Nanostructured and composite powders have been prepared by mechanochemical reaction from mixtures of Ti, BN, and powders. The raw materials have reacted to form a uniform mixture of TiN, and or depending on the amount of used in the starting mixtures, and the reaction proceeded through so-called mechanically activated self-sustaining reaction (MSR). Fine TiN and crystallites less than a few tens of nanometer were homogeneously dispersed in the amorphous or matrix after milling for 12 hours. These amorphous matrices became crystalline phases after annealing at high temperatures as expected, but the original microstructure did not change significantly
nanopowder has been synthesized by means of the flame method using a precursor of titanium tetraisopropoxide (TTIP, Ti. In order to clarify the effect of cooling rate of hot flame on the formation of crystalline phases, the flame was controlled by varying the mixing ratio and the flow rate of gases. Anatase phase was predominantly synthesized under the condition having the steep cooling gradient in flame, while a slow cooling gradient enabled to form almost rutile nanopowder of above 95%