간행물

한국분말야금학회지 KCI 등재 Journal of Korean Powder Metallurgy Institute

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol. 8 No. 3 (2001년 9월) 12

1.
2001.09 구독 인증기관 무료, 개인회원 유료
MgO based nanocomposite powder including ferromagnetic iron particle dispersions, which can be available for the magnetic and catalytic applications, was fabricated by the spray pyrolysis process using ultra-sonic atomizer and reduction processes. Liquid source was prepared from iron (Fe)-nitrate, as a source of Fe nano-dispersion, and magnesium (Mg)-nitrate, as a source of MgO materials, with pure water solvent. After the chamber were heated to given temperatures (500~), the mist of liquid droplets generated by ultrasonic atomizer carried into the chamber by a carrier gas of air, and the ist was decomposed into Fe-oxide and MgO nano-powder. The obtained powders were reduced by hydrogen atmosphere at 600~. The reduction behavior was investigated by thermal gravity and hygrometry. After reduction, the aggregated sub-micron Fe/MgO powders were obtained, and each aggregated powder composed of nano-sized Fe/MgO materials. By the difference of the chamber temperature, the particle size of Fe and MgO was changed in a few 10 nm levels. Also, the nano-porous Fe-MgO sub-micron powders were obtained. Through this preparation process and the evaluation of phase and microstructure, it was concluded that the Fe/MgO nanocomposite powders with high surface area and the higher coercive force were successfully fabricated.
4,000원
2.
2001.09 구독 인증기관 무료, 개인회원 유료
An optimum route to fabricate the ferrous alloy dispersed nanocomposites such as /Fe-Ni and /Fe-Co with sound microstructure and desired properties was investigated. The composites were fabricated by the sintering of powder mixtures of and nano-sized ferrous alloy, in which the alloy was prepared by solution-chemistry routes using metal nitrates powders and a subsequent hydorgen reduction process. Microstructural observation of reduced powder mixture revealed that the Fe-Ni or Fe-Co alloy particles of about 20 nm in size homogeneously surrounded , forming nanocomposite powder. The sintered /Fe-Ni composite showed the formation of Fe phase, while the reaction phases were not observed in /Fe-Co composite. Hot-pressed /Fe-Ni composite showed improved mechanical properties and magnetic response. The properties are discussed in terms of microstructural characteristics such as the distribution and size of alloy particles.
4,000원
3.
2001.09 구독 인증기관 무료, 개인회원 유료
A bulk porous composite with plantinum nano-dispersion was synthesized in air atmosphere through the combination of several in situ reactions, including the pyrolysis of . A mixture of (dolomite), , and LiF (0.5 wt%, as an additive) was cold isostatically pressed at 200 MPa and sintered at for 2 h. The porous composite ( : Pt=99 : 1 in volume) had a uniformly open-porous structure (porosity: 56%) with three-dimensional (3-D) network and a narrow pore-size distribution, similarly to the porous composites reported before. Catalytic Properties (viz., NO direct decomposition and NO reduction by ) of the composite were investigated up to . In the absence of oxygen, the NO conversion rate reached ~52% for the direct decomposition and ~100% for the reduction by , respectively. The results suggest the possibility of the porous composite as a multifunctional filter, i.e., simultaneous hot gas-filtering and in one component.
4,000원
4.
2001.09 구독 인증기관 무료, 개인회원 유료
The effect of grain refinement of the strength and ductility of metallic materials is investigated. A model in which a single phase material is considered as an effectively two-phase one is discussed. A distinctive feature of the model is that grain boundaries are treated as a separate phase deforming by a diffusion mechanism. Deformation of the grain interior phase is assumed to be carried by two concurrent mechanism. Deformation of the grain interior phase is assumed to be carried by two concurrent mechanisms: dislocation glide and mass transfer by diffusion. The model was exemplified by simulating uniaxial tensile deformation of Cu down to the nanometer grain size. The results confirm the observed strain hardening behaviour and a trend for reduction of ductility with decreasing grain size at room temperature.
4,000원
5.
2001.09 구독 인증기관 무료, 개인회원 유료
The microstructure and mechanical properties of nanocomposites synthesized by chemical processing were investigated. The nanocomposites containing 15 vol% hexagonal BN (h-BN) were fabricated by hot-pressing powders covered with turbostratic BN (t-BN). The t-BN coating on particles was prepared by heating particles covered with a mixture of boric acid and urea in hydrogen gas. TEM observations of this nanocomposite revealed that nano-sized h-BN particles were homogeneously dispersed within grains as well as at grain boundaries. The strength and thermal shock resistance were significantly improved in comparison with the microcomposites.
4,000원
6.
2001.09 구독 인증기관 무료, 개인회원 유료
Through the observation of wear scar of two ceramic materials, microstructural wear mechanisms was investigated. As for the -5 vol% SiC nanocomposite, the grain boundary fracture was suppressed by the presence of SiC nano-particles. The intragranular SiC particles have inhibited the extension of plastic deformation through the whole grain. Part of plastic deformation was accommodated around SiC particles, which made a cavity at the interface between SiC and matrix alumina. On the other hand, gas-pressure sintered silicon nitride showed extensive grain boundary fracture due to the thermal fatigue. The lamination of wear scar was initiated by the dissolution of grain boundary phase. These two extreme cases showed the importance of microstructures in wear behavior.
4,000원
7.
2001.09 구독 인증기관 무료, 개인회원 유료
Several fabrication processes, corresponding nanostructural features and multifunctionality as well has been investigated for oxide ceramic based nanocomposites with metal nanodispersion (i.e., ceramic/metal nanocomposites). Transition metal (Ni, Co, etc) dispersed alumina and zirconia based nanocomposites have been synthesized by reducing and hot-press sintering of ceramic and metal oxide mixtures prepared by several method. Improved fracture strength (1.1 and 1.9 GPa for and nanocomposites, respectively) of these composites have been achieved according to their nanostructures. In addition, ferromagnetic characteristic has been kept. The variation of magnetization with an applied stress has found to be more sensitive as smaller as the magnetic metal dispersion is. This result thus suggests the possibility of fracture and/or stress sensing of the composites by simple magnetic measurement.
4,000원
8.
2001.09 구독 인증기관 무료, 개인회원 유료
Ag doped Hydroxyapatite powder in nano-scale was successfully synthesized either by co-precipitation or by ion exchange route. The fabricated powder was successfully dispersed through freeze drying due to the prevention of secondary particles. The antimicrobial effects of nano-HAp against E.coli was superior to micron ones not only in its strength but also in duration.
4,000원
9.
2001.09 구독 인증기관 무료, 개인회원 유료
Modified inert gas condensation method was used to produce the nanocluster composites of . High-resolution TEM, SEM and catalytic measurements have been used to characterize the samples and study the synergistic effect between the CuO phase and (ceria) support. By varying the He pressure, the heating temperature and configuration of the heating boats inside the modified gas condensation chamber, nanoclusters of varying sizes, shapes and composition can be produced. The composition and nanostructured morphology were shown to influence the catalytic properties of the system. A copper content around 10 at% with a morphology that favors high-energy surfaces of ceria is shown to be beneficial for a high catalytic activity.
3,000원
10.
2001.09 구독 인증기관 무료, 개인회원 유료
LaMnO3, and gel films were deposited by spin-coating technique on scandium-doped zirconia (YSZ) substrate using the precursor solution prepared from , or ,2-methoxyethanol, and polyethylene glycol. By heat-treating the gel films, the electrochemical cells, were fabricated. The effect of polyethylene glycol on the microstructure evolution of and thin films was investigated, and NOx decomposition characteristics of the electrochemical cells were investigated at to . By applying a direct current to the electrochemical cell, good NOx conversion rate could be obtained relatively at low current value even if excess oxygen is included in the reaction gas mixture.
4,000원
11.
2001.09 구독 인증기관 무료, 개인회원 유료
Nano particles have recently been a major research interest, motivated by their unusual physical and chemical properties. Such particles can be synthesized using physical and chemical methods. The physical methods need expensive installation like vacuum induction furnace, whereas in chemical methods the process in generally very simple and low cost. In this study, simple and new fabrication process by using ultrasound was investigated to prepare the nano-sized metal particles on various powders at room temperature.
3,000원
12.
2001.09 구독 인증기관 무료, 개인회원 유료
/TiN nano/nano-type composites were successfully fabricated by the combination of a mechano-chemical grinding (MCG) method and a short time sintering process, and their wear resistance was evaluated. Powder mixtures of and Ti were prepared using mechano-chemical grinding process and the resulting nanocomposite powder mixtures were consolidated using pulsed electric current sintering (PECS). TEM observation showed that the nano/nano-type composites consisted of homogeneous and very fine matrix grains with the size less than 100 nm. The obtained -based nano/nano-type showed high wear resistance and electric discharge machinability.
3,000원