인류는 역사적으로 삶의 본질을 이해하고 지속적인 충만함을 성취하기 위해 끊임없이 노력해 왔다. 이러한 여정은 종종 자기실현으로 귀결된다. 자기실현은 단순한 심리적 상태를 넘어, 인간의 본질적인 욕구이자 지속적인 성장과 변형, 그리고 진정한 잠재력의 실현을 의미한다. 저명한 브라질 작가 파울로 코엘료는 그의 소설에 서 인간의 경험을 중심에 두며, 존재의 영적이고 실존적인 측면을 탐구한다. 코엘료의 이야기 속 주인공들은 전통적인 서사 속 영웅이 아닌, 평범하지만 내면의 여정을 통해 특별함을 보여주는 인물들이다. 연금술사(1988)의 산티아고와 11분(2003)의 마리 아는 모두 매우 개인적인 여정을 떠나며, 사회적 기대와 내면의 제약에 도전해 자기 안에 숨겨진 보물을 찾아 나선다. 산티아고는 자신의 ‘개인적 전설’을 향한 열망에 의 해 움직이며, 마리아는 사랑과 자존감, 인간관계의 복잡성을 탐색한다. 이 두 인물은 회복력, 용기, 자기 발견의 변혁적 본질을 구현하며, 이 논문은 그들이 자기실현에 이 르는 과정을 분석한다. 이를 통해 코엘료 작품 전반에 흐르는 운명, 삶의 목적, 내면의 충족이라는 보편적 주제를 조명한다. 코엘료는 이러한 이야기들을 통해 개인이 어떻게 자신의 여정을 통해 의미와 자기 실현을 향해 나아갈 수 있는지를 깊이 있게 통찰한다.
본 논문은 윌리엄 깁슨의 뉴로맨서에서 시뮬라크라, 사이버스페이스, 하이퍼리얼리티의 상호작용을 탐구하며, 이 소설을 포스트모던 조건을 집약한 기념비 적 텍스트로 위치시킨다. 장 보드리야르, 장프랑수아 리오타르, 프레드릭 제임슨 등의 이론적 관점을 바탕으로, 깁슨이 현실과 시뮬레이션의 경계가 무의미해진 허구적 우주 를 어떻게 구축하는지를 살핀다. 뉴로맨서에서 사이버스페이스 매트릭스는 단순한 서사 배경을 넘어서, 기호가 현실을 앞서고 대체하는 상징적 영역으로 기능하며 보드 리야르의 하이퍼리얼 개념을 구현한다. 주인공 케이스가 가상 네트워크를 무형으로 탐 색하는 모습은 정체성 위기를 반영하며, 첨단 기술 환경에서 안정된 자아가 붕괴하는 양상을 드러낸다. 본 논문은 이 소설이 데이터 과잉, 미디어 융합, 대서사의 붕괴로 특징지어지는 포스트모던성의 감각적·심리적 분위기를 포착하고 있음을 주장하며, 이 를 통해 현대 디지털 문화를 이해하는 분석적 틀을 제공한다. 정밀한 텍스트 분석을 통해, 이 연구는 뉴로맨서가 사이버펑크 미학에 기여한 바와 미디어 이론, 포스트모 던 철학, 기술문화 연구에서의 관련성을 강조한다.
The use of aluminum-based hybrid metal matrix composite (HMMC) materials, especially in engine components like pistons, is intended to improve wear resistance and overall performance. Crucial tribological indicators, such as wear and friction coefficients, underscore the significance of these materials. However, present aluminum alloys have limited wear because of clustered reinforced particles and relatively high coefficients of thermal expansion (CTE), resulting in inadequate anti-seizure properties during dry sliding conditions. This research introduces a novel “Hybrid Metal Matrix Composite of Al7068 Reinforced with Fly Ash-SiC-Al2O3”. Al7068 is employed for its superior strength-to-weight ratio and specific modulus, which is ideal for components exposed to cyclic loads and varying temperatures. The integration of fly Ash (FA), silicon carbide (SiC), and alumina (Al2O3) as reinforcements enhances wear resistance, diminishes particle clustering, improves stiffness, mitigates CTE discrepancies, and fortifies the composite against strain and corrosion, thereby enhancing its overall performance. The Stir-casting method was used with optimized reinforcement percentages (10 % total), and comprehensive evaluations through wear tests and mechanical property analyses determined the composite's optimal composition. The proposed HMMC variant with the most suitable reinforcement percentage exhibited enhanced engine piston functionality, reduced wear, low deformation of 0.20 mm, and a comparatively higher ultimate tensile strength of 190 megapascals (Mpa).
본 연구 논문은 우파마뉴 채터지의 소설 영어, 8월를 통해 도시 인도 생활을 분석한다. 이 소설은 인도 사회, 관료제, 문화적 역학을 탐구하며, 도시 현실을 복합적으로 조망한다. 주인공의 삶을 분석함으로써 현대 인도 사회를 지배하는 긴장, 모순, 그리고 열망을 밝혀낸다. 주요 주제는 관료제, 문화적 갈등, 사회적 불평등, 정체성, 그리고 도시 맥락에서의 실존적 위기이다. 본 연구는 도시의 복잡성을 이해하고, 포스트식민지 인도의 삶을 형성하는 사회적·문화적·제도적 역학에 대한 통찰을 제공하 는 것을 목표로 한다.
In recent years, high-entropy alloys (HEAs) have attracted considerable attention in materials engineering due to their unique phase stability and mechanical properties compared to conventional alloys. Since the inception of HEAs, CoCrFeMnNi alloys have been widely investigated due to their outstanding strength and fracture toughness at cryogenic temperatures. However, their lower yield strength at room temperature limits their structural applications. The mechanical properties of HEAs are greatly influenced by their processing methods and microstructural features. Unlike traditional melting techniques, powder metallurgy (PM) provides a unique opportunity to produce HEAs with nanocrystalline structures and uniform compositions. The current review explores recent advances in optimizing the microstructural characteristics in CoCrFeMnNi HEAs by using PM techniques to improve mechanical performance. The most promising strategies include grain refinement, dispersion strengthening, and the development of heterogeneous microstructures (e.g., harmonic, bimodal, and multi-metal lamellar structures). Thermomechanical treatments along with additive manufacturing techniques are also summarized. Additionally, the review addresses current challenges and suggests future research directions for designing advanced HEAs through PM techniques.
필립 풀먼(Philip Pullman)의 황금 나침반은 판타지와 디스토피아를 결합하여 상상력을 전체주의에 맞서는 힘으로 탐구한다. 소설의 중심에는 전체주의적 교회를 무너뜨리려는 라이라(Lyra)의 여정이 있으며, 이는 저항을 상징한다. 영혼의 화 신인 다이몬(daemons), 사랑과 의식을 상징하는 먼지 입자(dust) 등과 같은 환상적 장치들은 작품을 풍부하게 만들며, 억압에 맞서는 인간 정신의 반항을 은유적으로 묘사 한다. 풀먼의 소설은 청소년 디스토피아 소설의 보다 광범위한 주제와 공명하며, 급속 한 기술 및 생명공학 발전에 대한 불안감을 포착한다. 이 비평의 핵심은 풀먼의 허구 적 세계가 현대의 문제들을 어떻게 반영하고, 젊은 주인공들의 정의와 공정함을 향한 여정을 통해 상징적으로 해결하고 있는지를 조명하는 데 있다.
High-entropy alloys (HEAs) represent a revolutionary class of materials characterized by their multi-principal element compositions and exceptional mechanical properties. Powder metallurgy, a versatile and cost-effective manufacturing process, offers significant advantages for the development of HEAs, including precise control over their composition, microstructure, and mechanical properties. This review explores innovative approaches integrating powder metallurgy techniques in the synthesis and optimization of HEAs. Key advances in powder production, sintering methods, and additive manufacturing are examined, highlighting their roles in improving the performance, advancement, and applicability of HEAs. The review also discusses the mechanical properties, potential industrial applications, and future trends in the field, providing a comprehensive overview of the current state and future prospects of HEA development using powder metallurgy.
Gold nanoparticles (Au NPs) decorated carbon nanofibers (CNFs) have been prepared by an electrospinning approach and then carbonized. The prepared Au-CNFs were employed to modifying a screen printed electrode (SPE) for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Au NPs are uniformly dispersed on carbon nanofibers were confirmed by the structure and morphological studies. The modified electrodes were tested in cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CA) to characterize their electrochemical responses. Compared to bare SPE, the Au-CNFs/SPE had a better sensing response to AA, DA, and UA. The electrochemical oxidation signal of AA, DA and UA are well separated into three distinct peaks with peak potential separation of 280 mV, 159 mV and 439 mV between AA-DA, DA-UA and AA-UA respectively in CV studies and the corresponding peak potential separation in DPV studies are 290 mV, 166 mV and 456 mV. The Au-CNFs/SPE has a wide linear response of AA, DA and UA in DPV analysis over the range of 5–40 μM ( R2 = 0.9984), 2–16 μM ( R2 = 0.9962) and 2–16 μM ( R2 = 0.9983) with corresponding detection limits of 0.9 μM, 0.4 μM and 0.3 μM at S/N = 3, respectively. The developed modified SPE based sensor exhibits excellent reproducibility, stability, and repeatability. The excellent sensing response of Au-CNFs could reveal to a promising approach in electrochemical sensor.
Aluminum-based composites are in high demand in industrial fields due to their light weight, high electrical conductivity, and corrosion resistance. Due to its unique advantages for composite fabrication, powder metallurgy is a crucial player in meeting this demand. However, the size and weight fraction of the reinforcement significantly influence the components' quality and performance. Understanding the correlation of these variables is crucial for building high-quality components. This study, therefore, investigated the correlations among various parameters—namely, milling time, reinforcement ratio, and size—that affect the composite’s physical and mechanical properties. An artificial neural network model was developed and showed the ability to correlate the processing parameters with the density, hardness, and tensile strength of Al2024-B4C composites. The predicted index of relative importance suggests that the milling time has the most substantial effect on fabricated components. This practical insight can be directly applied in the fabrication of high-quality Al2024-B4C composites.
Copper, silver, and gold-reduced graphene oxide nanocomposite (Cu-rGO, Ag-rGO, and Au-rGO) were fabricated via the hydrothermal method, which shows unique physiochemical properties. Environment friendly electromagnetic radiation was employed to synthesize rGO from GO. The nonlinear optical phenomenon of noble metal decorated rGO is predominantly due to excited state absorption, which arises from surface plasmon resonance and increases in defects at the surface due to Cu, Ag, and Au incorporation. It is found that the third-order nonlinear absorption coefficient was in the order of 10− 10 m/W, with notable enhancements in the third-order properties of Au-rGO compared to other nanocomposites and their respective counterparts. Functionalizing rGO induces defect states ( sp3), increasing NLO response. Cu, Ag, and Au exhibit higher Surface-Enhanced Raman Scattering (SERS) activity due to rGO-induced structural modifications. SERS signals are influenced by dominant signals from Au nanorods. The electronic structures for pure and doped rGO were investigated through Density Functional Theory (DFT). The computed partial density of states (PDOS) confirms the enhancement of the state in Au-doped rGO is due to the charge transference from Au to C 2p orbital. The optical absorption spectra and PDOS reveal the possibility of free carrier absorption enhancement in Au which validates experimentally observed higher two-photon absorption (β) value of Au-doped rGO. The tuning of nonlinear optical and SERS behaviour with variation in the noble metal upon rGO provides an easy way to attain tuneable properties which are exceedingly required in both optoelectronics and photonics applications.
This study pioneers a transformative approach of discarded orange peels (Citrus sinensis) into highly porous carbon, demonstrating its potential application in energy storage devices. The porous carbon structure offers a substantial surface area, making it conducive for effective ion adsorption and storage, thereby enhancing capacitance. The comprehensive characterization, including X-ray diffraction, Fourier transform infrared, Raman spectroscopy, field emission scanning electron microscopy, and XPS verifies the material’s suitability for energy storage applications by confirming its nature, functional groups, graphitic structure, porous morphology and surface elemental compositions. Moreover, the introduced plasma treatment not only improves the material’s intensity, bending vibrations, and morphology but also increases capacitance, as evidenced by galvanostatic charge–discharge tests. The air plasma-treated carbon exhibits a noteworthy capacitance of 1916F/g at 0.05A/g in 2 M KOH electrolyte. long term cyclic stability has been conducted up to 10,000 cycles, the calculated capacitance retention and columbic efficiency is 92.7% and 97.6%. These advancements underscore the potential of utilizing activated carbon from agricultural waste in capacitors and supercapatteries, offering a sustainable solution for energy storage with enhanced performance characteristics.