간행물

Carbon Letters KCI 등재 Carbon letters

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol.35 No.1 (2025년 2월) 26

1.
2025.02 구독 인증기관 무료, 개인회원 유료
The damage caused by water pollution has seriously affected human health, in which nitrate is difficult to remove effectively because of its stability and solubility in the water environment. Among the various technologies for nitrate removal, electrocatalytic conversion of nitrate to ammonia is one of the best choice because of its green and efficient nature as well as its ability to “turn waste into treasure”. In recent years, the development of high-performance electrocatalysts to promote the activity of electrocatalytic nitrate reduction ( NO3RR) has received extensive attention from researchers. Among various electrocatalytic materials for NO3RR, carbon-based catalysts have become a promising electrocatalyst due to the advantages of affordable price, controllable structure, excellent stability and exceptional reactivity. Focusing on the carbon-based materials, this review summarizes the research progress of carbon-based catalysts for NO3RR in recent years, including heteroatom-doped carbon-based catalysts as well as metal and metal oxide-loaded or modified carbon-based catalysts. Opinions on the current challenges and future research directions of carbon-based catalysts for NO3RR are also presented. This review hopes to provide some references and principles for the design and preparation of carbon-based catalysts for high-performanceNO3RR process.
5,400원
2.
2025.02 구독 인증기관 무료, 개인회원 유료
Activated carbon fibers (ACFs) have emerged as promising adsorbents for environmental applications in the removal, separation, and modification of organic compounds in liquid and gas phases. Recent research has focused on enhancing the effectiveness of ACFs via precursor and surface modification, aiming to enhance their affinity for specific pollutants. Hence, the present review reports recent research advances in this area, focusing on ACF production and modification techniques, along with their respective advantages and disadvantages. After a brief description of ACFs, their state-of-the-art surface modification techniques are systematically summarized, divided into two categories: (i) type of precursor [e.g., polyacrylonitrile (PAN), pitch, phenolic resin (e.g., novoloid), biomass] and (ii) type of surface modification (wet or dry). In short, this review presents recent advances in the preparation and modification of ACFs for the removal of organic compounds from aqueous and gas phases; various fabrication techniques and the adsorption mechanisms of organic compounds are also discussed in detail.
6,100원
3.
2025.02 구독 인증기관 무료, 개인회원 유료
The increasing presence of antibiotics in aquatic ecosystems has raised serious concerns about their ecological and human health impacts. In response, extensive research has focused on the degradation and removal of these stubborn pollutants. Among various approaches, heterogeneous photocatalysis has gained prominence due to its effectiveness in eliminating diverse contaminants from water. This method stands out for its cost-efficiency, environmental friendliness, and high performance, making it a practical solution for pollutant mitigation. Graphitic carbon nitride (g-C3N4) has attracted significant attention for developing advanced photocatalysts. Its non-metallic nature, robust stability, suitable electronic configuration, and favorable 2.7 eV band gap make it an excellent candidate. However, g-C3N4 faces challenges such as limited visible-light absorption, rapid charge recombination, low oxidation power, and poor texture, which hinder its photocatalytic efficiency. These issues can be addressed by developing g-C3N4-composite-based magnetic semiconductor photocatalysts possessing compatible energy bands. Integrating magnetic materials with g-C3N4 photocatalysts offers new possibilities for easy separation and recyclability, enhancing practical use. While previous studies have also detailed various modification methods for g-C3N4-based materials, the structure-performance relationships of g-C3N4, particularly for detecting and degrading antibiotics, need further exploration. This review critically examines the utilization of g-C3N4-based magnetic photocatalysts for antibiotic removal, exploring fabrication techniques, physical properties, and performance metrics. Various strategies to optimize their efficiency, including doping, heterojunction formation, and surface modification, are also covered. It also delves into the mechanisms of photocatalytic antibiotic degradation, addressing challenges and opportunities in developing these materials. Ultimately, we propose that the synergy of magnetic components into g-C3N4 not only represents a significant advancement in photocatalyst design but also opens new avenues for sustainable wastewater treatment technologies, demonstrating a high level of novelty in the field. The review provides valuable insights into current research and potential advancements in antibiotic remediation.
6,900원
4.
2025.02 구독 인증기관 무료, 개인회원 유료
Heterocycles are an important class of compounds that are widely used in pharmaceuticals, agrochemicals, dyes, and materials. Multicomponent reactions (MCRs) offer efficient synthetic routes for producing these complex structures. The search for effective and sustainable catalytic processes in organic synthesis has led to the exploration of various nanomaterials as potential catalysts. To this end, carbon nanotubes (CNTs) have recently emerged as promising heterogeneous catalysts for the MCR synthesis of heterocycles due to their unique properties, which include high surface area and reactivity, tunable surface chemistry, excellent electrical conductivity, recyclability, and exceptional thermal and chemical stability. This review provides a comprehensive analysis and overview of the use of CNTs as catalysts for synthesizing heterocycles via MCRs and their advantages.
7,700원
5.
2025.02 구독 인증기관 무료, 개인회원 유료
Low-loaded (1–5 wt%) platinum on carbon-based electrocatalysts (l-Pt/C) for the oxygen reduction reaction (ORR) has garnered attention as a promising approach to advancing fuel cell commercialization. Carbon materials, known for their morphological diversity, high specific surface area, ease of doping, cost-effectiveness, and high electrical conductivity, are widely used as supports for l-Pt/C catalysts. This review provides a comprehensive overview of recent progress in carbonbased l-Pt/C catalysts, focusing on three major strategies: modulating pore structure, utilizing the Pt size effect, and introducing novel Pt active sites. Each strategy is detailed, highlighting its principles, characteristics, and limitations with illustrative examples. Finally, we discuss and offer guidance for future research perspectives on highly active l-Pt/C catalysts for ORR.
5,700원
6.
2025.02 구독 인증기관 무료, 개인회원 유료
Graphene aerogels have gained widespread recognition in recent years as electrode materials for supercapacitors, primarily attributed to their excellent stability and impressive specific capacitance. However, further enhancing their specific capacitance is a formidable task. One viable strategy to overcome this hurdle is to composite them with metal oxides. In doing so, the metal oxides boost the specific capacitance of graphene aerogels, while the latter addresses the stability issues inherent in metal oxides. This article reviews recent research on Ni, Co, and Mn oxide–graphene composite aerogels in supercapacitors, summarizing their preparation processes, performance and energy storage mechanism. While existing studies have demonstrated the feasibility of metal oxide–graphene composite aerogels as supercapacitor electrodes, several challenges remain, necessitating deeper exploration by researchers in this field.
4,900원
7.
2025.02 구독 인증기관 무료, 개인회원 유료
Biomass-derived carbon materials have attracted considerable attention in electromagnetic wave (EMW) absorption applications due to their advantages of low cost, light weight, and sustainability. Herein, bagasse-based porous carbon (BPC) was prepared by canonization and activation process from natural waste bagasse. The porous flower-like MoS2/ BPC composites were successfully prepared for efficient microwave absorption via hydrothermal process by in-situ formation of flower-like MoS2 into the porous structure of BPC. The effect of hydrothermal time and hydrothermal temperature on surface morphology, degree of graphitization, surface chemical composition and impedance matching of the prepared samples was investigated. Results demonstrated that when the hydrothermal temperature was 220 °C, and the hydrothermal time was 24 h, the obtained MoS2/ BPC sample (named as MoS2/ BPC-220 ℃) showed the minimum reflection loss value (RL) of − 41.6 dB at 8.96 GHz and exhibited effective microwave absorption bandwidth (EAB) of 4.32 GHz at a relatively thin thickness of 1.5 mm. This work provides a promising way to prepare novel biomass-derived porous carbon for strong broadband electromagnetic absorption.
4,900원
8.
2025.02 구독 인증기관 무료, 개인회원 유료
Fossil fuels have a high energy density, meaning they contain a significant amount of energy per unit of volume, making them efficient for energy production and transport. Biodiesel is especially becoming a fossil fuel alternative and a key part of renewable energy. Several types of waste from homes, markets, street vendors, and other industrial places were collected and transesterified with Ni-doped ZnO nanoparticles for this study. These included castor oil, coffee grounds, eggshells, vegetable oil, fruit peels, and soybean oil. The Ni-doped ZnO’s were then calcined at 800 °C. The maximum conversion rate found in converting fruit peel waste into biodiesel is about 87.6%, and it was 89.6% when the oil-to-methanal ratio was about 1:2 and the reaction time was 140 min. This is the maximum biodiesel production compared to other wastes. Moreover, using vegetable oil with nanocatalyst, the maximum biodiesel production rate of about 90.58% was recorded with 15% catalyst loading, which is the maximum biodiesel production compared with the other wastes with nanocatalyst. Furthermore, at 75 °C and a concentration of catalyst of about 15% the maximum biodiesel production obtained by using castor oil is about 92.8%. It has the highest biodiesel yield compared with the yield recorded from other waste. The catalyst also demonstrated great stability and reusability for the synthesis of biodiesel. Using waste fruit peels with Ni-doped ZnO helps to progress low-cost and ecologically friendly catalyst for sustainable biodiesel production.
4,300원
9.
2025.02 구독 인증기관 무료, 개인회원 유료
Environmental-friendly photocatalytic technology is attracting considerable attentions in the filed of antibiotic degradation. In this work, an innovative Ag/ZnO/Bi2WO6 catalyst was fabricated using sol–gel and ultrasonic methods for the degradation cefuroxime sodium in wastewater. The optimized Ag/ZnO/Bi2WO6 photocatalyst demonstrated the a remarkable 77.0% photocatalytic efficiency within 180 min under simulated solar sunlight, with an apparent rate constant of 0.01085 min− 1. This efficiency is notably 6.02 and 1.41 times higher than that of pure ZnO and Ag/ZnO, respectively. The Ag/ZnO/Bi2WO6 photocatalyst achieved a degradation efficiency of up to 72.3% in tap water and polluted river water, while achieving 65.7% degradation in pulping wastewater and pharmaceutical wastewater. Experiments involving reactive species scavenging and electron paramagnetic resonance implied that hydroxide radicals were the predominant active species responsible for the degradation. The enhanced catalytic mechanism and degradation pathway were elucidated, providing valuable insights into the construction and development of high-performance catalysts based on zinc oxide.
4,500원
10.
2025.02 구독 인증기관 무료, 개인회원 유료
Food contamination with heavy-metal ions and nitrites poses a serious threat to human health. Consequently, the development of fast and sensitive platforms for detecting these contaminants is urgently needed. In this study, a novel sensing platform was developed by integrating carbon nanotubes generated by the pyrolysis of waste masks (WMCNTs) with ZIF-8 for the simultaneous detection of Cd2+, Pb2+, and nitrite. Specifically, the electronic structure of the WMCNT backbone was modulated by doping with B and N atoms. Nanoporous ZIF-8 was then grown in-situ on its surface to produce composites with enhanced electrical conductivities and large specific surface areas. This modification provided more active sites for the attachment of heavy-metal ions and nitrites. Under optimized conditions, the sensing platform exhibited a wide linear range with the Pb2+, Cd2+, and NO2 − limits of detection of 2.68, 12.12, and 5.94 μM, respectively. Notably, the sensing platform demonstrated excellent anti-interference capabilities and effectively detected nitrites and heavy-metal ions in pickled foods.
4,200원
11.
2025.02 구독 인증기관 무료, 개인회원 유료
The mass production of highly crystalline carbon nanotubes (CNTs) is highly demanded, yet achieving it remains challenging due to incomplete understanding of how synthetic parameters, except temperature, affect the crystallinity of CNTs. Notably, the choice of carbon precursor significantly influences CNT synthesis, but its impact on crystallinity remains unclear. Here, we employed a data analytics approach to examine the effect of carbon precursors on CNT crystallinity during their synthesis in a fluidized bed reactor. We compared ethylene, acetylene, and a mixture of these. Using Bayesian optimization (BO), we optimized synthesis conditions to maximize IG/ID of CNTs for each precursor. Key parameters considered were reaction temperature, precursor concentration, and hydrogen concentration. We conducted three separate BO processes to evaluate the effectiveness of each carbon precursor on CNT crystallinity. The results indicated no significant difference in IG/ID of CNTs among the carbon precursors. In addition, multiple linear regression analysis did not support a synergetic effect between acetylene and ethylene. Interestingly, contour plots demonstrated consistent relationships between synthesis parameters and IG/ID across different carbon precursors. This data analytics approach allowed us to successfully assess the impact of carbon precursors on the CNT crystallinity and analyze the relationship between synthesis parameters and CNT crystallinity.
4,200원
12.
2025.02 구독 인증기관 무료, 개인회원 유료
Supercapacitors, emerging as energy storage devices, face challenges in practical applications due to their relatively low energy density. In this study, we fabricate a novelty supercapacitor cathode composed of Co9S8, conductive phosphorusdoped carbon (P–C), and layered double hydroxides (LDH). The incorporation of a conductive layer significantly enhances charge transfer, capacity, and electrochemical stability, ultimately elevating the electrochemical performance of the cathode. The fabricated Co9S8@ P–C@NiCo-LDH demonstrates an exceptional area-specific capacitance of 3.9 F cm− 2 at a current density of 2 mA cm− 2, along with remarkable cyclic stability, maintaining 98.9% of their capacity after 2000 cycles. The flexible asymmetric all-solid-state supercapacitor (AAS) assembled with Co9S8@ P–C@NiCo-LDH and activated carbon (AC) exhibits a remarkable energy density of 0.065 mWh cm− 2, corresponding to 325.0 W h kg− 1. Moreover, it maintains excellent cycling stability even at elevated current densities of 10 mA cm− 2. Following 5000 consecutive charge/discharge cycles, the AAS device maintains approximately 91.1% of its initial specific capacity. The AAS device successfully powered a 3V white LED for 5 min, further emphasizing its practicality.
4,000원
13.
2025.02 구독 인증기관 무료, 개인회원 유료
Herein, the electrochemical technique was employed to detect hydroquinone (HQ) using a modified glassy carbon electrode (GCE) with reduced graphene oxide (rGO) and silver (Ag)-decorated tin oxy-nanoparticles (SnONPs) to form Ag@SnONPs/ rGO nanocomposites (NC). The Ag@SnONPs/rGO nanocomposites were morphologically characterized using multiple analytical methods such as XRD, Raman, XPS, HR-SEM, and HR-TEM. This study revealed that Ag@SnONPs/rGO-NC exhibits excellent conductivity due to the presence of rGO that provides potential π–π interactions with SnONPs, while Ag enhances electron-transfer kinetics. This facilitates efficient charge transport within the sensor, thereby improving HQ adsorption. The key advantages of the sensor demonstrate a concentration of 0.5–200 μM, and a low detection limit value of 0.010 μM, and a high sensitivity value of 6.0746 μA μM−1 cm2. Under optimal conditions, the Ag@SnONPs/rGO sensor may be used to determine HQ and its concentration using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The Ag@SnONPs-rGO/GCE sensor demonstrated excellent reproducibility, repeatability, and stability. Moreover, the suggested bimetallic nanocomposite effectively determined the presence of HQ in water and cosmetic samples.
4,600원
14.
2025.02 구독 인증기관 무료, 개인회원 유료
Porous carbon has been intensively used for microwave absorption in merits of its outstanding specific surface area and dielectric properties. This study investigates the microwave absorption capacity of saturated wood-based activated carbon (SWAC) which was used for methylene blue treatment. The results demonstrate that SWAC, subjected to high temperature calcination, exhibits excellent microwave absorption properties. The structure, composition, micro-morphology, and electromagnetic parameters of SWAC were comprehensively analyzed using various techniques. The findings reveal that after calcination, SWAC possesses a rich pore structure, optimized material impedance matching, and the introduction of N atoms from the organic substance methylene blue into the carbon lattice of SWAC, thereby providing dipole polarization loss. These properties significantly contribute to its microwave absorption performance. The optimal reflection loss of SWAC at 6 GHz reaches −50.29 dB with an effective absorption bandwidth of 2.01 GHz, achieved at a calcination temperature of 700 °C and a paraffin matrix additive amount of 25%. The one-step treatment of SWAC proves to be a competitive and cost-effective method for producing microwave absorbers, which holds significant importance for the recovery of SWAC.
4,000원
15.
2025.02 구독 인증기관 무료, 개인회원 유료
This article describes an efficient electrochemical sensor based on a graphene oxide- manganese dioxide (GO-MnO2) nanocomposite for detecting acetaminophen (AAP) in human fluids. The MnO2- wrapped GO sensing element was prepared by a simple and environmentally friendly co-precipitation method. The prepared GO-MnO2 nanostructure was characterized for its structural, morphological, and functional properties and tested for AAP detection. At a pH of 3, the electrochemical results revealed a high redox process toward AAP due to the transfer of two electrons and protons between the GO-MnO2/ glassy carbon electrode (GO-MnO2/GCE) and AAP. The differential pulse voltammetry (DPV) analytical results showed the precise sensing ability of AAP in a wide linear range [0.125–2000 μM] with superior anti-interference ability. The calculated sensitivity of the GO-MnO2/GCE was 17.04 μAμM−1 cm− 2, and the detection limit (LOD) was 7.042 nM. The sensor exhibited high reliability, good reproducibility, and a good recovery range of 98.47–99.22% in human urine sample analysis.
4,200원
16.
2025.02 구독 인증기관 무료, 개인회원 유료
Artificial photosynthesis, which mimics the natural process used by plants, offers a promising strategy for harnessing solar energy to produce valuable fuels. One intriguing approach is the photocatalyst-enzyme attached system, where a photocatalyst captures light energy and transfers it to an enzyme to drive specific chemical reactions. This study describes the synthesis of a novel photocatalyst (MWCNTCEBr) formed by coupling multiwall carbon nanotubes (MWCNTs) with a dye ethidium bromide (EBr) via a condensation reaction. The resulting photocatalyst exhibits excellent charge separation and migration abilities, leading to enhanced photocatalytic activity. Notably, MWCNTCEBr photocatalyst successfully converts α-Ketoglutarate to L-Glutamate (81.9%) and photo-regeneration of NADH (76.20%) under the influence of solar radiation. Therefore, the study demonstrates the development and the application of MWCNTCEBr photocatalyst for impressive NADH regeneration and bio-transformation.
4,000원
17.
2025.02 구독 인증기관 무료, 개인회원 유료
Three-dimensional printed polycaprolactone/β-tricalcium phosphate (PCL/β-TCP) scaffolds reinforced with carbon nanotubes (CNTs) were fabricated and characterized for bone tissue engineering applications. The incorporation of CNTs significantly enhanced the mechanical properties, with the aligned PCL/β-TCP/CNT scaffold (1 wt% CNTs) exhibiting a 125% and 123% increase in compressive modulus (180.3 ± 10.1 MPa) and strength (7.8 ± 0.6 MPa), respectively, compared to the PCL/β-TCP scaffold. The β-glycerol phosphate (BGP)-modified PCL/β-TCP/CNT scaffold showed similar mechanical properties to the aligned scaffold. All scaffolds maintained high porosity (> 70%) and a wide pore size distribution (50–500 μm). The scaffolds demonstrated excellent biocompatibility, with hemolysis rates below 5% and high cell viability. The aligned PCL/β-TCP/ CNT scaffold promoted the highest rat adipose-derived stem cell proliferation, while the BGP-modified scaffold enhanced human dental pulp stem cell proliferation and mineralization.
4,000원
18.
2025.02 구독 인증기관 무료, 개인회원 유료
Thermal decomposition of low-density polyethylene (LDPE) was monitored by thermogravimetry under N2 atmosphere in the presence of solid acid catalysts such as alumina (α-Al2O3, γ-Al2O3), crystalline silica-alumina (SA, molar ratio of Si/Al = 0.19) and amorphous silica-alumina catalysts (ASA, molar ratio of Si/Al = 4.9). Crystal structure and surface area of solid acid catalysts were measured by XRD and BET, respectively. The strength and distribution of acid sites of solid acid catalysts were estimated by NH3- TPD. It was observed that total acidity strength is in the order of ASA (1.77 μmmol NH3/ g) > AS (1.42 μmol NH3/ g) > γ-Al2O3 (1.06 μmol NH3/ g) > α-Al2O3 (0.06 μmol NH3/ g). Thermal degradation behavior of LDPE with and without solid acid catalyst was monitored by TGA, where heating rates (β) of 5, 10, and 20 °C/min were employed under an inert atmosphere, and their activation energies ( Ea), onset temperatures ( Tinitial), decomposition temperatures ( Tdecomp) were calculated and compared. The activation energy ( Ea) was evaluated using the Coats-Redfern method. Solid acid catalysts with stronger acidity and higher surface area showed a decrease in activation energy and onset temperature. Activation energy of LDPE over ASA catalyst is decreased to 97.3 kJ/mol from thermal decomposition of LDPE without catalyst of 117.2 kJ/mol under heating rate of 10 °C/min. The isothermal decomposition of LDPE was monitored at 300 °C for 3 h with a heating rate of 10 °C/min, where 13.1% and 24.2% wt. loss were observed over SA and ASA, respectively, while only 0.7% wt. loss was observed for LDPE without a solid acid catalyst.
4,000원
19.
2025.02 구독 인증기관 무료, 개인회원 유료
Photocatalysis technology including hydrogen evolution from water splitting, CO2 reduction and N2 conversion to ammonia emerges as a significant approach for energy crisis and environmental pollution. For these conventional semiconductors such as TiO2, ZnO, WO3, CdS and g-C3N4, however, inefficient photoabsorption, rapid recombination of photogenerated carriers, and inadequate surface reactive sites hamper the photoinduced activity and stability. Defect engineering, especially oxygen vacancy, has recently drawn the attention of a number of investigators primarily in connection with its feasibility of regulatability, identifiability and effectiveness. A series of ferroelectric and piezoelectric semiconductors, with internal electric field generated by the polarization, are considered an excellent candidate for replacement of conventional semiconductors, because the observed charge separation ability of those is far from theoretical expectation. With the boost of oxygen vacancy, polarization behavior can be effectively regulated to further improve photocatalytic performance. Related studies based on the above background are the current hotspot of photocatalysis; this paper reviews the latest research progress of ferroelectric and piezoelectric photocatalysts with oxygen vacancy. Starting from the generation of oxygen vacancies, five preparation strategy including ion doping, thermal treatment, chemical reduction, ultraviolet irradiation, and plasma etching are introduced; advanced characterization are summarized in classification of spectroscopy, energy spectrum, electron microscopy, density function theory and in situ techniques. Secondly, the mechanism of oxygen vacancy regulated polarization and their synergistic photocatalytic reactions are reviewed and summarized. Finally, an overview on the prospect of advanced photocatalytic engineering concerned to oxygen vacancies involved ferroelectric and piezoelectric photocatalysts is proposed.
5,800원
20.
2025.02 구독 인증기관 무료, 개인회원 유료
We report the simple one-step hydrothermal green synthesis of carbon dots (CDs) without any chemical reagents using mangosteen pulp (CDs1), peel (CDs2), and leaf (CDs3) extract as a green carbon source. In the aqueous medium, these CDs had a size of 8–15 nm with an energy gap of about 4 eV. The CDs emitted a bright green color under ultraviolet (UV) irritation with an average fluorescence quantum yield of the CDs of 1.6%. Moreover, the CDs contained various functional groups, such as C = C, C–C, C–O–C, C–O, C = O, C–H, and O–H, which were beneficial for enhancing their fluorescence property. Furthermore, the CDs were applied in the stain fluorescent imaging of myosatellite chicken stem cells and Vero cells. The CDs2 and CDs3 induced a strong fluorescence emission intensity of the strain cells, whereas CDs1 acted as the highest potential enhancer in cell proliferation as confirmed by its cellular viability which was the around four times that of the control. Therefore, the CDs were highly biocompatible and acted as enhancers in cell proliferation in myosatellite chicken stem cells and Vero cells. Thus, simple, cost-effective, scalable, and green synthetic approach-based CDs show promise for the development of selective organelle labeling and optical sensing probes.
4,200원
1 2