간행물

Carbon Letters KCI 등재 Carbon letters

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol.5 No.4 (2004년 12월) 6

1.
2004.12 구독 인증기관 무료, 개인회원 유료
The polymer-ceramic hybrid, known as 'ceramer', was synthesized by a sol-gel process by incorporating different amount of alkoxide as source of silicon in resorcinol-formaldehyde in presence of basic catalyst to get different percentage of silicon in ultimate carbonized composites. FTIR of the ceramer confirms that it is a network of Si-O-Si, Si-O-CH2 and Si-OH type groups linked with benzene ring. Different amount of silicon in the ceramer exhibits varying temperature of thermal stability and lower coefficient of thermal expansion as compared to pure resorcinol-formaldehyde resin. The lower value of CTE in ceramer is due to existence of silica and resorcinol -formaldehyde in co-continuous phase. Unidirectional composites prepared with ceramer matrix and high-strength carbon fibers show lower value of flexural strength at polymer stage as compared to those prepared with resorcinol-formaldehyde resin. However, after heat treatment to 1450℃, the ceramer matrix composites show large improvement in the mechanical properties, i.e. with 7% silicon in the ceramer, the flexural strength is enhanced by 100% and flexural modulus value by 40% as compared to that of pure resorcinol-formaldehyde resin matrix composites.
4,000원
2.
2004.12 구독 인증기관 무료, 개인회원 유료
Carbon-ceramic composites refer to a special class of carbon based materials which cover the main drawbacks of carbon, particularly its proneness to air oxidation, while essentially retaining its outstanding properties. In the present paper, the authors report the results of a systematic study made towards the development of C-SiC-B4C composites, which involves the effects of compositional parameters, namely, carbon-to-ceramic and ceramic-to-ceramic ratios, on the oxidation behaviour as well as other characteristics of these composites. The C-SiC-B4C composites, heat-treated to 1400℃, have shown that their oxidation behaviour at temperatures of 800~1200℃ depends jointly on the total ceramic content and the SiC : B4C ratio. Good compositions of C-SiC-B4C composites exhibiting zero weight loss in air at temperatures of 800~1200℃ for periods of 4~9 h, have been identified. Composites with these compositions undergo a weight gain or a maximum weight loss of less than 3% during the establishment of a protective layer at the surface of carbon in a period of 1~6 h. Significant improvement in the strength of C-SiC-B4C composites has been observed which increases with an increase in the total ceramic content and also with an increase in the SiC : B4C ratio.
4,000원
3.
2004.12 구독 인증기관 무료, 개인회원 유료
The equilibrium and dynamic adsorption of methylene blue from aqueous solutions by activated carbons have been studied. The equilibrium studies have been carried out on two samples of activated carbon fibres and two samples of granulated activated carbons. These activated carbons have different BET surface areas and are associated with varying amounts of carbon oxygen surface groups. The amounts of these surface groups was enhanced by oxidation with HNO3 and O2 gas at 350℃ and decreased by degassing at increasing temperatures of 400˚, 650˚ and 950℃. The adsorption increases on oxidation of the carbon surface and decreases on degassing. The increase in adsorption has been attributed to the formation of acidic carbon-oxygen surface groups and the decrease in adsorption on degassing to their elimination. The dynamic adsorption studies have been carried out on the two granulated activated carbons using two 50 mm diameter glass columns at a feed concentration of 300 mg/L and at different hydraulic loading rates (HLR) and bed heights. The minimum achievable concentrations are comparatively lower while the adsorption capacities are higher for GAC-S under the same operating conditions. The adsorption capacity of a carbon increases with increase in HLR but the rate of increase decreases at higher HLR values.
4,000원
4.
2004.12 구독 인증기관 무료, 개인회원 유료
Thermolysis of Cu(NO3)2·3H2O impregnated activated carbon fiber (ACF) was studied by means of XRD analysis to obtain Cu-impregnated ACF. Cu(NO3)2·3H2O was converted into Cu2O around 230℃. The Cu2O was reduced to Cu at 400℃, resulting in ACF-C(Cu). Some Cu particles have a tendency to aggregate through the heat treatment, resulting in the ununiform distribution in ACF. Catalytic decomposition of NO gas has been performed by Cu-impregnated ACF in a column reactor at 400℃. Initial NO concentration was 1300 ppm diluted in helium gas. NO gas was effectively decomposed by 5~10 wt% Cu-impregnated ACF at 400℃. The concentration of NO was maintained less than 200 ppm for 6 hours in this system. The ACF-C(Cu) deoxidized NO to N2 and was reduced to ACF-C(Cu2O) in the initial stage. The ACF-C(Cu2O) also deoxidized NO to N2 and reduced to ACF-C(CuO). This ACF-C(CuO) was converted again into ACF-C(Cu) by heating. There was no consumption of ACF in mass during thermolysis and catalytic decomposition of NO to N2 by copper. The catalytic decomposition was accelerated with increase of the reaction temperature.
4,000원
5.
2004.12 구독 인증기관 무료, 개인회원 유료
In this work, a nickel metal (Ni) electroplating on the activated carbon fiber (Ni/ACFs) surfaces was carried out to remove the toxic hydrogen chloride (HCl) gas. The surface properties of the treated ACFs were determined by using nitrogen adsorption isotherms at 77 K, SEM, and X-ray diffraction (XRD) measurements. HCl removal efficiency was confirmed by a gas-detecting tube technique. As a result, the nickel metal contents on the ACF surfaces were increased with increasing the plating time. And, it was found that the specific surface area or the micropore volume of the ACFs studied was slightly decreased as increasing the plating time. Whereas, it was revealed that the HCl removal efficiency containing nickel metal showed higher efficiency values than that of untreated ACFs. These results indicated that the presence of nickel metal on the ACF surfaces played an important role in improving the HCl removal over the Ni/ACFs, due to the catalytic reactions between nickel and chlorine.
4,000원
6.
2004.12 구독 인증기관 무료, 개인회원 유료
The electrochemical removal (ECR) of water pollutants by activated carbon fiber (ACF) electrodes from wastewater was investigated over wide range of electrochemical reaction time. The ECR capacities of ACF electrodes were associated with their internal porosity and were related to physical properties and to reaction time. And, surface morphologies and elemental analysis for the ACFs after electrochemical reaction are investigated by SEM and EDX to explain the changes in adsorption properties. The FT-IR spectra of ACFs for the investigation of functional groups show that the electrochemical treatment is consequently associated with the homogeneous removal of pollutants with the increasing surface reactivity of the activated carbon fiber surfaces. The ACFs were electrochemically reacted to waste water to investigate the removal efficiency for the COD, T-N and T-P. From these removal results of pollutants using ACFs substrate, satisfactory removal performance was obtained. The outstanding removal effects of the ACFs substrate were determined by the properties of the material for adsorption and trapping of organics, and catalytic effects.
4,000원