간행물

Carbon Letters KCI 등재 Carbon letters

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol.9 No.2 (2008년 6월) 8

1.
2008.06 구독 인증기관 무료, 개인회원 유료
In the present study Sisal fiber obtained from the leaves of Agave sisalana has been chosen to validate its viability as an adsorbent for the removal of Nickel from aqueous solutions. The material was also surface modified and its effect on adsorption of Nickel was also studied. Agave sisalana fiber was found to be a cheap and effective adsorbent doing away with the need to activate the material therby reducing processing cost. The equilibrium studies indicated that the adsorption capacity of raw fiber and the surface modified fiber was 8.66 and 9.77 mg/g respectively with the Langmuir isotherm describing the adsorption phenomena better than the Freundlich and Temkin isotherm. The adsorption was found to be exothermic from the thermodynamic studies and the kinetics showed that the adsorption phenomena were second order.
4,000원
2.
2008.06 구독 인증기관 무료, 개인회원 유료
In this work, we employed an electroless nickel plating on glass fibers in order to enhance the electric conductivity of fibers. And the effects of metal content and plating time on the conductivity of fibers were investigated. From the results, island-like metal clusters were found on the fiber surfaces in initial plating state, and perfect metallic layers were observed after 10 min of plating time. The thickness of metallic layers on fiber surfaces was proportion to plating time, and the electric conductivity showed similar trends. The nickel cluster sizes on fibers decreased with increasing plating time, indicating that surface energetics of the fibers could become more homogeneous and make well-packed metallic layers, resulting in the high conductivity of Ni/glass fibers.
3,000원
3.
2008.06 구독 인증기관 무료, 개인회원 유료
We have demonstrated the feasibility of using electrospinning method to fabricate long and continuous composite nanofiber sheets of polyacrylonitrile (PAN) incorporated with zinc oxide (ZnO). Such PAN/ZnO composite nanofiber sheets represent an important step toward utilizing carbon nanofibers (CNFs) as materials to achieve remarkably enhanced physico-chemical properties. In an attempt to derive these advantages, we have used a variety of techniques such as field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution X-ray diffraction (HR-XRD) to obtain quantitative data on the materials. The CNFs produced are in the diameter range of 100 to 350 nm after carbonization at 1000℃. Electrical conductivity of the random CNFs was increased by increasing the concentration of ZnO. A dramatic improvement in porosity and specific surface area of the CNFs was a clear evidence of the novelty of the method used. This study indicated that the optimal ZnO concentration of 3 wt% is enough to produce CNFs having enhanced electrical and physico-chemical properties.
4,000원
4.
2008.06 구독 인증기관 무료, 개인회원 유료
Rubber reinforcing carbon black N330 was treated by physical activation under CO2 to different degrees of burn-off. The mechanical properties indicating the reinforcement of SBR (Styrene-Butadiene Rubber) vulcanizates filled by activated carbon blacks, such as tensile strength, modulus at 300% strain and elongation at break were determined. During CO2 activation of fresh carbon blacks, the development of microporous structure caused an increase of extremely large specific surface area and the porosity turned out to be an increasing function of the degree of burn-off. The tensile strength and modulus at 300% of activated carbon blacks filled rubber composites were improved at lower loading ratios of 20 and 30 phr, but decreased drastically after 30 phr, which is considered that it might be difficult to get a fully dispersed rubber mixture at higher loading ratios for fillers having very large specific surface areas. However, the Electromagnetic Interference (EMI) shielding effectiveness of SBR rubber composites having activated carbon black at 74% yield were improved at a large extent when compared to those having raw carbon black and increased significantly as a function of increasing loading ratio.
4,000원
5.
2008.06 구독 인증기관 무료, 개인회원 유료
High modulus pitch based carbon fibers (HM) were exposed to isothermal oxidation using tube furnace in carbon dioxide gas to study the oxidation kinetics under the temperature of 800-1100℃. The kinetic equation f=1--(-atb) was introduced and the constant b was obtained in the range of 1.02~1.42. The oxidation kinetics were evaluated by the reaction-controlling regime (RCR) depending upon the apparent activation energies with the conversion increasing from 0.2 to 0.8. The activation energies decrease from 24.7 to 21.0 kcal/mole with the conversion increasing from 0.2 to 0.8, respectively. According to the RCR, the reaction was limited by more diffusion controlling regime for the HM fibers with the conversion increasing. Therefore, it seems that the oxidation which is under the diffusion controlling regime takes place continuously from the skin to the core of the fiber.
4,000원
6.
2008.06 구독 인증기관 무료, 개인회원 유료
This study aims to find a correlation between XRD and Raman result of the activated carbon fibers as a function of its activation degrees. La of the isotropic carbon fiber prepared by oxidation in carbon dioxide gas have been observed using laser Raman spectroscopy. The basic structural parameters of the fibers were evaluated by XRD as well, and compared with Raman result. The La of the carbon fibers were measured to be 25.5 a from Raman analysis and 23.6 a from XRD analysis. La of the ACFs were 23.6 a and 20.4 a, respectively, representing less ordered through activation process. It seems that the ID/IG of Raman spectra were related to crystallite size(La). Raman spectroscopy has demonstrated its unique ability to detect structural changes during the activation of the fibers. There was good correlation between the La value obtained from Raman and XRD.
3,000원
7.
2008.06 구독 인증기관 무료, 개인회원 유료
In order to investigate the effect of doping C, N, B and F elements on TiO2 for reducing the band gap, the heat treatment of TiO2 was carried out with tetraethylammonium tetrafluoroborate. Through XRD and XPS analysis, the C, N, B and F doped anatase TiO2 was confirmed. According to the increase of temperature during treatment, the particle size was increased due to aggregation of TiO2 with elements (B, C, N and F). To investigate the capacity of photocatalyst for degradation of dye under solar light, the degradation of acridine orange and methylene blue was conducted. The degradation of dyes was carried out successfully under solar light indicating the effect of doping elements (B, C, N and F) on TiO2 for reducing the band gap effectively.
4,000원
8.
2008.06 구독 인증기관 무료, 개인회원 유료
The commercial activated carbons are typically prepared by activation from coconut shell char or coal char containing lots of inorganic impurities. They also have pore structure and pore size distribution depending on nanostructure of precursor materials. In this study, two types of commercial activated carbons were applied for EDLC electrode by removing impurities with acid treatments, and controlling pore size distribution and contents of functional group with heat treatment. The effect of the surface functional groups on electrochemical performance of the activated carbon electrodes was investigated. The initial gravimetric and volumetric capacitance of coconut based activated carbon electrode which was acid treated by HNO3 and then heat treated at 800℃ were 90 F/g and 42 F/cc respectively showing 94% of charge-discharge efficiency. Such a good electrochemical performance can be possibly applied to the medium capacitance of EDLC.
4,000원