Double walled carbon nanotubes (DWCNTs) are considered an ideal model for studying the coupling interactions between different concentric shells in multi-walled CNTs. Due to their intrinsic coaxial structures they are mechanically, thermally, and structurally more stable than single walled CNTs. Geometrically, owing to the buffer-like function of the outer tubes in DWCNTs, the inner tubes exhibit exciting transport and optical properties that lend them promise in the fabrication of field-effect transistors, stable field emitters, and lithium ion batteries. In addition, by utilizing the outer tube chemistry, DWCNTs can be useful for anchoring semiconducting quantum dots and also as effective multifunctional fillers in producing tough, conductive transparent polymer films. The inner tubes meanwhile preserve their excitonic transitions. This article reviews the synthesis of DWCNTs, their electronic structure, transport, and mechanical properties, and their potential uses.
Materials with appropriate surface roughness and low surface energy can form superhy-drophobic surfaces, displaying water contact angles greater than 150°. Superhydrophobic carbon-based materials are particularly interesting due to their exceptional physicochemical properties. This review discusses the various techniques used to produce superhydrophobic carbon-based materials such as carbon fibers,carbon nanotubes, graphene, amorphous car-bons, etc. Recent advances in emerging fieldssuch as energy, environmental remediation, and thermal management in relation to these materials are also discussed.
Wastewater from textile industries is a major cause of water pollution in most developing countries. In order to address the issues of water pollution and high cost for treatment processes, the use of an inexpensive and environmentally benign adsorbents has been studied. The objective was to find a better alternative to the conventional methods. Lemon grass waste (ash) collected from a lemon grass stream distillation subunit in Bhutan was tested for dye removal from aqueous solutions. The study investigated the removal of methylene blue using the following operational parameters: initial concentration (100-600 mg/L), contact time, adsorbent dose (0.1-0.55 gm/100 mL), and pH (3-10). It was found that the percentage removal of dye increased with a decrease of the initial concentration and increased contact time and dose of adsorbent. The basic pH solution of dye showed better adsorption capacity as compared to the acidic dye solution. Langmuir and Freundlich adsorption isotherms were fitted to the data well. Data fitted better to Lagergren pseudo 2nd order kinetics than a 1st order kinetic model. Surface morphology was also examined via scanning electron microscopy. An elemental analysis was also carried out and the chemical composition and functional groups were analyzed using energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy techniques, respectively. The obtained results indicate that lemon grass ash could be employed as a low cost alternative to commercial activated carbon in wastewater treatment for the removal of dyes.
Due to their morphology, electrochemical stability, and function as a conducting carbon matrix, graphene nanosheets (GNS) have been studied for their potential roles in improving the performance of sulfur cathodes. In this study, a GNS/sulfur (GNS/S) composite was prepared using the infiltration method with organic solvent. The structure, morphology and crystallinity of the composites were examined using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The electrochemical properties were also characterized using cyclic voltammetry (CV). The CV data revealed that the GNS/S composites exhibited enhanced specific-current density and ~10% higher capacity, in comparison with the S-containing, activated-carbon samples. The composite electrode also showed better cycling performance for multiple charge/discharge cycles. The improvement in the capacity and cycling stability of the GNS/S composite electrode is probably related to the fact that the graphene in the composite improves conductivity and that the graphene is well dispersed in the composites.
Conductive polymer composites (CPCs) consist of a polymeric matrix and a conductive fil-er, for example, carbon black, carbon fibers,graphite or carbon nanotubes (CNTs). The criti-cal amount of the electrically conductive fillernecessary to build up a continuous conductive network, and accordingly, to make the material conductive; is referred to as the percolation threshold. From technical and economical viewpoints, it is desirable to decrease the conduc-tive-fillerpercolation-threshold as much as possible. In this study, we investigated the effect of polymer/conductive-fillerinteractions, as well as the processing and morphological devel-opment of low-percolation-threshold (Φc) conductive-polymer composites. The aim of the study was to produce conductive composites containing less multi-walled CNTs (MWCNTs) than required for pure polypropylene (PP) through two approaches: one using various mix-ing methods and the other using immiscible polymer blends. Variants of the conductive PP composite filledwith MWCNT was prepared by dry mixing, melt mixing, mechanofusion, and compression molding. The percolation threshold (Φc) of the MWCNT-PP composites was most successfully lowered using the mechanofusion process than with any other mixing method (2-5 wt%). The mechanofusion process was found to enhance formation of a perco-lation network structure, and to ensure a more uniform state of dispersion in the CPCs. The immiscible-polymer blends were prepared by melt mixing (internal mixer) poly(vinylidene fluoride) (PVD, PP/PVDF, volume ratio 1:1) filled with MWCN.
In this study, the effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites was investigated. Two types of carbon/basalt/epoxy hybrid composites with a sandwich form were fabricated: basalt skin-carbon core (BSCC) composites and carbon skin-basalt core (CSBC) composites. Fracture tests were conducted and the fracture surfaces of the carbon/basalt/epoxy hybrid composites were then examined using scanning electron microscopy (SEM). The results showed that the flexural strength and flexural modulus of the CSBC specimen respectively were ~32% and ~245% greater than those of the BSCC specimen. However, the interlaminar fracture toughness of the CSBC specimen was ~10% smaller than that of the BSCC specimen. SEM results on the fracture surface showed that matrix cracking is a dominant fracture mechanism for the CSBC specimen while interfacial debonding between fibers and epoxy resin is a dominant fracture process for the BSCC specimen.
Spinnable pitch for melt-electrospinning was obtained from pyrolized fuel oil by electron beam (E-beam) radiation treatment. The modifiedpitch was characterized by measuring its elemental composition, softening point, viscosity, molecular weight, and spinnability. The softening point and viscosity properties of the modifiedpitch were influencedby reforming types (heat or E-beam radiation treatment) and the use of a catalyst. The softening point and molecular weight were increased in proportion to absorbed doses of E-beam radiation and added AlCl3 due to the formation of pitch by free radical polymerization. The range of the molecular weight distribution of the modifiedpitch becomes narrow with better spinning owing to the generated aromatic compounds with similar molecular weight. The diameter of melt-electrospun pitch fibersunder applied power of 20 kV decreased 53% (4.7 ± 0.9 μm) compared to that of melt-spun pitch fibers(10.2 ± 2.8 μm). It is found that E-beam treatment for reforming could be a promising method in terms of time-savings and cost-effectiveness, and the melt-electrospinning method is suitable for the preparation of thinner fibersthan those obtained with the conventional melt-spinning method.
Three dimensional self-assembled graphene hydrogels were easily fabricated by electron beam irradiation (EBI) using an aqueous solution of wool/poly(vinyl alcohol) and graphene oxide (GO). After exposure to various levels of EBI radiation, the highly porous, self-assembled, wool-based graphene hydrogels were characterized using scanning electron microscopy and Fourier-transform infrared spectroscopy; to determine the gel fraction, degree of swelling, gel strength, kinetics-of-swelling analyses and removal of hexavalent chromium (Cr(VI)) from the aqueous solution. X-ray diffraction results confirmed that EBI played a significantly important role in reducing GO to graphene. The adsorption equilibrium of Cr(VI) was reached within 80 min and the adsorption capacity was dramatically increased as the acidity of the initial solution was decreased from pH 5 to 2. Changes in ionic strength did not exert much effect on the adsorption behavior.
Isotropic synthetic graphite scrap and phenolic resin were mixed, and the mixed powder was formed at 300 MPa to produce a green body. New bulk graphite was produced by carbon-izing the green body at 700°C, and the bulk graphite thus produced was impregnated with resin and re-carbonized at 700°C. The bulk density of the bulk graphite was 1.29 g/cm3, and the porosity of the open pores was 29.8%. After one impregnation, the density increased to 1.44 g/cm3 while the porosity decreased to 25.2%. Differences in the pore distribution before and after impregnation were easily confirmedby observing the microstructure. In addition, by using an X-ray diffractometer, the degrees-of-alignment (Da) were obtained for one side perpendicular to the direction of compression molding of the bulk graphite (the “top-face”), and one side parallel to the direction of compression molding (the “side-face”). The anisot-ropy ratio calculated from the Da-values obtained was 1.13, which indicates comparatively good isotropy.
In this work, activated carbon nanofiber(ACNF) electrodes with high double-layer capaci-tance and good rate capability were prepared from polyacrylonitrile nanofibersby optimiz-ing the carbonization temperature prior to H2O activation. The morphology of the ACNFs was observed by scanning electron microscopy. The elemental composition was determined by analysis of X-ray photoelectron spectroscopy. N2-adsorption-isotherm characteristics at 77 K were confirmedby Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. ACNFs processed at different carbonization temperatures were applied as electrodes for electrical double-layer capacitors. The experimental results showed that the surface mor-phology of the CNFs was not significantlychanged after the carbonization process, although their diameters gradually decreased with increasing carbonization temperature. It was found that the carbon content in the CNFs could easily be tailored by controlling the carbonization temperature. The specificcapacitance of the prepared ACNFs was enhanced by increasing the carbonization temperature.