간행물

Carbon Letters KCI 등재 Carbon letters

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol.33 No.6 (2023년 10월) 38

1.
2023.10 구독 인증기관 무료, 개인회원 유료
As the demand for flexible wearable electronic devices increases, the development of light, thin and flexible high-performance energy-storage devices to power them is a research priority. This review highlights the latest research advances in flexible wearable supercapacitors, covering functional classifications such as stretchability, permeability, self-healing and shapememory capabilities, as well as practical studies on energy harvesting capabilities.
6,000원
2.
2023.10 구독 인증기관 무료, 개인회원 유료
The need for high-performance environmental remediation has increased due to the environment’s ongoing degradation in the form of significant growth in industrialization and urbanization. Therefore, the toxic heavy metals can easily enter into environmental as well as foods and thus the search of clean water for drinking, household and irrigation purposes is of crucial importance. To meet this challenge, microelectrodes are flexible, low-cost and easier for fabrication has become the strong role in the detection of heavy metals with high sensitivity towards higher adsorption of heavy metals from contaminated water. To improve the sensitivity of the microelectrodes, carbon-based microelectrodes decorated with nanomaterials have been explored for the detection of metal ions thereby their presence in trace levels can be estimated. The aim of the present review is to summarize the recent developments in carbon-based microelectrodes for the electrochemical determination of heavy metals. It is followed by the various nanomaterials decorated on the carbon microelectrodes for detection of heavy metals was systematically discussed. Finally, the application and the future perspectives in the development of smart electrochemical sensing is provided. This short review will provide the useful information for the recent development in microelectrodes and also guide the pathway for the detection of heavy metals.
4,000원
3.
2023.10 구독 인증기관 무료, 개인회원 유료
Proton exchange membrane fuel cells (PEMFCs) are an auspicious energy conversion technology with the potential to address rising energy demands while reducing greenhouse gas emissions. The stack’s performance, durability, and economy scale are greatly influenced by the materials used for the PEMFC, viz., the membrane electrocatalyst assembly (MEA) and bipolar flow plates (BPPs). Despite extensive study, carbon-based materials have outstanding physicochemical, electrical, and structural attributes crucial to stack performance, making them an excellent choice for PEMFC manufacturers. Carbon materials substantially impact the cost, performance, and durability of PEMFCs since they are prevalently sought for and widely employed in the construction of BPPs and gas diffusion layers (GDLs)) and in electrocatalysts as a support material. Consequently, it is essential to assemble a review that centers on utilizing such material potential, focusing on its research development, applications, problems, and future possibilities. The prime focus of this assessment is to offer a clear understanding of the potential roles of carbon and its allotropes in PEMFC applications. Consequently, this article comprehensively evaluates the applicability, functionality, recent advancements, and ambiguous concerns associated with carbonbased materials in PEMFCs.
6,100원
4.
2023.10 구독 인증기관 무료, 개인회원 유료
The use of NG in the transportation sector is becoming an appealing option to diesel and gasoline fuels, presenting higher benefits. ANG technology offers a secure, cost-effective, energy-efficient strategy for the storage of NG in porous sorbents at reasonable gas densities. The major goal for its extensive utilization is the requirement of effective storage materials under practicable conditions. Recently, there has been increased attention in utilizing bio-wastes for the preparation of microporous carbons. In this contribution, our growing knowledge on the use of biobased materials and the processing strategies in an effort to predictively produce effective porous carbons appropriate for ANG technology have been reviewed. By careful literature selection, different precursors with different alternative processes to convert low-cost bio-wastes into porous carbons and achievements in methane storage are presented. To gain deeper insight into the technology, the correlation between the structural and chemical properties of materials and the factors affecting the storage performance are highlighted. The utilization of bio-wastes for the development of microporous carbons with facile methods emerged to be encouraging, which would be significant in larger scale applications. Bio-waste processing for ANG storage is valued over many other techniques, and the products are able to store substantial levels of methane. This review could help improve researchers’ evaluation of the methods as a guideline for ANG. Further studies for achieving an accomplished interconnection between the structural characteristics and the methane storage capacities with different bio-wastes and optimization strategies would be beneficial.
6,900원
5.
2023.10 구독 인증기관 무료, 개인회원 유료
The flaw of low dispersibility in the metal matrix brought on by graphene's full crystal structure can be improved by the application of ion beam radiation to the surface of the material. Copper atoms are uniformly dispersed on the modified graphene oxide ( GOM) surface after being irradiated to a copper ion beam, and during the sputtering modification, the valence state of copper is changed, resulting in the formation of a new CuO phase on the graphene oxide (GO) surface. Therefore, after copper ion beam irradiation of graphene, the interfacial adhesion between GOM and copper matrix is enhanced, and the wear resistance is significantly improved. When the GOM content is low, it can withstand most of the load during the friction and wear test, which reduces the wear of the copper matrix and the occurrence of fatigue cracks at the interface of the composite material.
4,200원
6.
2023.10 구독 인증기관 무료, 개인회원 유료
Owing to the great demand for portable and wearable chemical sensors, the development of all-solid-state potentiometric ion sensors is highly desirable considering their simplicity and stability. However, most ion sensors are challenged by the penetration of water and gas molecules into ion-selective membranes, causing unstable and undesirable sensing performances. In this study, a hydrophobic ionic liquid-modified graphene (Gr) sheet was prepared using a fluid dynamics-induced exfoliation and functionalization process. The high hydrophobicity and electrical double-layer capacitance of Gr make it a potential solid-state ion-to-electron transducer for the development of potentiometric sodium-ion ( Na+) sensors. The as-prepared Na+ sensors effectively prevented the formation of the water layer and penetration of gas species, resulting in stable and high sensing performances. The Na+ sensors showed a Nernstian sensitivity of 58.11 mV/[Na+] with a low relative standard deviation (0.46), fast response time (5.1 s), good selectivity (K < 10− 4), and good durability. Furthermore, the Na+ sensor demonstrated its feasibility in practical applications by measuring accurate and reliable ion concentrations of artificial human sweat and tear samples, comparable to a commercial ion meter.
4,000원
7.
2023.10 구독 인증기관 무료, 개인회원 유료
This study presents the synthesis, characterization, and utilization of marine macroalgae-derived bio-carbon catalysts (BC and KOH-AC) for the efficient conversion of waste cooking oil (WCO) into biodiesel. The biochar (BC) was produced through slow pyrolysis of macroalgal biomass, which was subsequently activated with potassium hydroxide (KOH) to produce a KOH-modified activated carbon (KOH-AC) catalyst. Advanced characterization techniques, including SEM, EDX, XRD, FTIR, and TGA, were used to examine the physicochemical characteristics of the catalysts. The synthesized catalysts were utilized to produce biodiesel from WCO, and the results revealed that the highest biodiesel yields, 98.96%, and 47.54%, were obtained using KOH-AC and BC catalysts, respectively, under optimal reaction conditions of 66 °C temperature, 12.3 M/O molar ratio, 130 min time, and 3.08 wt.% catalyst loading via RSM optimization. The kinetic and thermodynamic parameters, such as k, Ea, ΔH, ΔS, and ΔG, were determined to be 0.0346 min− 1, 43.31 kJ mol− 1, 38.98 kJ mol− 1, − 158.38 J K− 1 mol− 1, and 92.58 kJ mol− 1, respectively. The KOH-AC catalyst was recycled up to five times, with a significant biodiesel yield of 80.37%. The fuel properties of the biodiesel met ASTM (D6751) specifications, ensuring that it has excellent fuel characteristics and can be used as an alternative fuel.
5,500원
8.
2023.10 구독 인증기관 무료, 개인회원 유료
A novel kind of self-assembled graphene quantum dots-Co3O4 (GQDs-Co3O4) nanocomposite was successfully manufactured through a hydrothermal approach and used as an extremely effectual oxygen evolution reaction (OER) electrocatalyst. The characterization of morphology with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that Co3O4 nanosheets combined with graphene quantum dots (GQDs) had a new type of hexagonal lamellar selfassembly structure. The GQDs-Co3O4 electrocatalyst showed enhanced electrochemical catalytic properties in an alkaline solution. The start potential of the OER was 0.543 V (vs SCE) in 1 M KOH solution, and 0.577 V (vs SCE) in 0.1 M KOH solution correspondingly. The current density of 10 mA cm− 2 had been attained at the overpotential of 321 mV in 1 M KOH solution and 450 mV in 0.1 M KOH solution. Furthermore, the current density can reach 171 mA cm− 2 in 1 M KOH solution and 21.4 mA cm− 2 in 0.1 M KOH solution at 0.8 V. Moreover, the GQDs-Co3O4 nanocomposite also maintained an ideal constancy in an alkaline solution with only a small deterioration of the activity (7%) compared with the original value after repeating potential cycling for 1000 cycles.
4,000원
9.
2023.10 구독 인증기관 무료, 개인회원 유료
In this study, the elastic properties of aluminium nanocomposite representative volumetric element (RVE) reinforced with GNP have been analysed. Pure aluminium is lightweight and has low strength which is not suitable for various aerospace applications. Adding graphene to aluminium gives a highly strengthened nano-matrix. A 3D multiscale finite element (FE) representative volumetric element (RVE) has been developed to estimate the mechanical behaviour of GNP-reinforced aluminium graphene nanocomposite (AGNC). The factors influencing the behaviour of AGNC have been investigated with different weight fractions (wt%), sizes and orientations of GNP. The Young’s modulus of AGNC is enhanced by increasing the wt% of GNP and reducing the size of GNP in the aluminium matrix. The Young’s modulus of AGNC with 1% wt% has been enhanced two times and yield strength by five times than pure Al matrix. In the case of different sizes of GNP, the strength of 15-nm-diameter GNP AGNC enhanced two times and medium-sized GNP, i.e. 30 nm has shown a great combination of strength and ductility. After that different orientations have also influenced the mechanical properties and enhancement shown in layered orientation compared to different angles of GNP.
4,500원
10.
2023.10 구독 인증기관 무료, 개인회원 유료
Nitrogen and phosphorous dual-doped carbon nanotubes (N,P/CNT) have been grown in a single-step direct synthesis process by CVD method using iron-loaded mesoporous SBA-15 support, as an electrode material for the energy storage device. For comparison, pristine nanotubes, nitrogen and phosphorous individually doped nanotubes were also prepared. The basic characterization studies clarify the formation of nanotubes and the elemental mapping tells about the presence of the dopant. Under three-electrode investigations, N,P/CNT produced a maximum specific capacitance of about 358.2 F/g at 0.5 A/g current density. The electrochemical performance of N,P/CNT was further extended by fabricating as a symmetric supercapacitor device, which delivers 108.6 F/g of specific capacitance for 0.5 A/g with 15 Wh/kg energy density and 250 W/kg power density. The observed energy efficiency of the device was 92.3%. The capacitance retention and coulombic efficiency were 96.2% and 90.6%, respectively, calculated over 5000 charge–discharge cycles.
4,500원
11.
2023.10 구독 인증기관 무료, 개인회원 유료
Sulfur and nitrogen co-doped carbon dots (NSCDs) were quickly synthesized by the microwave-assisted method from triammonium citrate and thiourea. NSCDs showed a quantum yield of 11.5% with excitation and emission bands at 355 and 432 nm, respectively. Also, a fluorescence quenching was observed in the presence of Pb(II) ions, and the as-synthesized CDs were used as a sensitive probe for detecting Pb(II) in water and food samples. The results showed the optimal conditions for Pb(II) determination were CDs concentration of 0.02 mg mL− 1 at pH 6.0–7.0 and an incubation time of 20 min. The relative fluorescence intensity of NSCDs was proportional to Pb(II) concentrations in the range of 0.029–2.40 and 2.40–14.4 μmol L− 1 with a correlation coefficient (R2) of 0.998 and 0.955, respectively, and a detection limit of 9.2 × 10– 3 μmol L− 1. Responses were highly repeatable, with a standard deviation below 3.5%. The suggested method demonstrates the potential of a green, fast, and low-cost approach for Pb(II) determination in water, tea, and rice samples with satisfying results.
4,000원
12.
2023.10 구독 인증기관 무료, 개인회원 유료
Flexible supercapacitors (FS) are ideal as power backups for upcoming stretchable electronics due to their high power density and good mechanical compliance. However, lacking technology for FS mass manufacturing is still a significant obstacle. The present study describes a novel method for preparing FS based on reduced graphene oxide (RGO) using the N+ plasma technique, in which N+ reduces graphene oxide on the surface of a cotton/polyester substrate. The effect of aloe vera (AV) as a natural reducing & capping agent and carbon nanotubes (CNT) as nanoconductors on the electrochemical performance of the electrodes is studied. FESEM and XPS were employed to investigate the electrodes' structural and chemical composition of electrodes. The galvanostatic charge–discharge curves of electrodes revealed the enhancement of the electrochemical activity of the as-prepared electrode upon additions of AV and CNT. The areal capacitance of the RGO, RGO/AV, and RGO/ AV/CNT supercapacitors at 5 mV/s was 511, 1244.5, and 1879 mF/cm2, respectively. The RGO electrode showed capacitive retention of 80.9% after 2000 cycles enhanced to 89.7% and 92% for RGO/AV and RGO/AV/CNT electrodes, respectively. The equivalent series resistance of the RGO electrode was 126.28 Ω, decreased to 56.62 and 40.06 Ω for RGO/AV and RGO/ AV/CNT electrodes, respectively.
4,000원
13.
2023.10 구독 인증기관 무료, 개인회원 유료
Graphene oxide (GO) and ultrafine slag (UFS) have been applied to reinforce cement mortar cubes (CMC) in this research. The consequences of GO and UFS on the mechanical attributes of the CMC were explored through experimental investigations. Established on the results, at the 28 days of hydration, the CMC compressive and flexural strength with 0.03% of GO and 10% UFS were 89.8 N/mm2 and 9.1 N/mm2, respectively. Furthermore, the structural changes of CMC with GO and UFS were qualitatively analysed with instrumental techniques such as scanning electron microscope (SEM), X-ray fluorescence (XRF), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), FT Raman spectroscopy, atomic force microscopy (AFM), and 27Al, 29Si-Nuclear magnetic resonance spectroscopy (NMR). SEM results reported that GO and UFS formed an aggregated nanostructure that improved the microstructural properties of the CMC. TGA analysis revealed the quantum of calcium hydrate and bound water accomplished by supplementing GO bound to the UFS aggregates. FT-IR analysis of the CMC samples confirmed the ‘O-’comprising functional groups of GO which expedited the formation of complexes between calcium carbonate ( CaCO3) and UFS. 0.03% GO was the optimum dosage that enhanced the compressive and flexural attributes when combined with 10% UFS in CMC.
4,300원
14.
2023.10 구독 인증기관 무료, 개인회원 유료
In this study, we successfully grafted chitosan (CS) onto multi-walled carbon nanotubes (MWCNTs) to enhance their properties and potential applications in the biomedical field. FTIR spectroscopy confirmed the successful covalent bonding of CS onto MWCNTs, indicated by the new absorption peak of the amide bond (–CONH–). Thermal analysis showed that the modified MWCNTs (MWCNT-CS) had significant weight loss around 260 °C, suggesting the decomposition of hydroxypropyl chitosan, and confirming its presence in the nanocomposite. SEM images revealed that CS grafting improved the dispersibility of MWCNTs, a property crucial for their use as nanofillers in polymers. Moreover, the micro-tensile bond strength of dentin surface increased with increasing MWCNT-CS concentrations, indicating the potential of MWCNT-CS as a pretreatment for dentin bonding. After simulated aging, the bond strength remained significantly higher for MWCNT-CS groups compared to those without pretreatment. In biocompatibility assessment using the MTT assay, MWCNT-CS showed higher cell viability than MWCNT, suggesting improved biocompatibility after CS modification. The results of this study suggest that CS-modified MWCNTs could be promising materials for applications in dentin bonding, dentin mineralization, bone scaffolding, implants, and drug delivery systems.
4,000원
15.
2023.10 구독 인증기관 무료, 개인회원 유료
The spherical mesophases are the main precursors for the high tap density of carbonaceous anode batteries. However, it is challenging to control mesophase size without coalescence and no deformation since it quickly coalesces into a regular large sphere. Here, we propose a feasible extraction method to refine the spherical size of mesophase using benzene. Thermogravimetric and differential scanning calorimetry analysis of untreated pitch revealed that the maximum temperature for mesophase nucleation should not exceed 410 °C to provoke the nucleation of mesophase spheres while maintaining a high pyrolysis yield. The extraction results showed that the extraction weight tends to decrease with an increase in the solvent ratio. There is an exponential relationship between the influence of solvent ratio and the ability for extraction. The solubility of the spherical mesophase in benzene is size-dependent and can dissolve selectively spherical mesophases smaller than 5 μm. Consequently, a monodisperse spherical mesophase was obtained. The reason for forming uniform mesophase spheres can be explained by their thermodynamic state, as described by the “two-step” classical nucleation theory. Benzene effectively improves the size distribution of spherical mesophase by dissolving small sizes while retaining large ones.
4,000원
16.
2023.10 구독 인증기관 무료, 개인회원 유료
The development of food packaging materials with mechanical and antimicrobial properties is still a major challenge. N, P-doped carbons (NPCs) were synthesized. Poly(butylene adipate-co-terephthalate) (PBAT), which has an adverse effect on the environment and affects petroleum resources, has been commonly used for applications as food packaging. The development of PBAT composites reinforced with NPCs and studies on their structure and antimicrobial properties are presented in this study. The composite materials in the PBAT/NPCs were processed by solution casting. The plasticizing properties of NPCs enhanced the mechanical strength of composites produced of PBAT and NPCs. The thermal properties of PBAT composites were enhanced with addition of NPCs, according to thermogravimetric analysis (TGA). After reinforcement, PBAT/NPCs composites became more hydrophobic, according to contact angle measurements. In studies against S. aureus and E. coli food-borne pathogenic bacteria, the obtained composites show noticeably improved antimicrobial activity. The composite materials, according to the results of PBAT and NPCs may be a good choice for packing for food that prevents microorganisms.
4,000원
17.
2023.10 구독 인증기관 무료, 개인회원 유료
In this research, synergetic and separate influence of nano-carbon black (C.Bn) and SiC on the microstructure and flexural strength of ZrB2 were investigated. So, ZrB2 and ZrB2- 30vol%-based composites containing 10 and 15 vol% C.Bn as well as ZrB2- 15 vol% SiC were fabricated via spark plasma sintering at 1850 °C for soaking time of 8 min under the applied pressure of 35 MPa. Relative density was measured by Archimedes method. Microstructural evaluation was carried out by applying the field emission electron microscopy (FESEM), and flexural strength was measured by three-point bending test. It was found the relative density improves in the presence of C.Bn and SiC especially in synergetic state so that the full densification was gained in Z30Si10C.Bn and Z30Si15C.Bn composites through their reactions with impurities at 1850 °C. In the monolithic ZrB2 system, the C.Bn addition improves the flexural strength slightly to 300 MPa and 315 MPa from 290 MPa. However, co-doped 10 vol% C.Bn with 30 vol% SiC resulted to achieve maximum flexural strength of 486 MPa in comparison with individually applying each of them (395 MPa for Z30Si and 300 MPa for Z10 C.Bn).
4,000원
18.
2023.10 구독 인증기관 무료, 개인회원 유료
Refined structured tin dioxide gets the amount of attraction because of its low cost and stability. The C@SnO2 nanospheres with mesoporous structures were produced using the hard template method in this work. The C@SnO2 is primarily gained attributed to the dehydration condensation of C6H12O6 and the hydrolysis of SnCl4 ·5H2O. The morphology of the C@SnO2 was analyzed by physical characterization and the diameter of the obtained C@SnO2 was around 138 nm. When C@SnO2 was applied to lithium-ion batteries as anode material, it performed outstanding electrochemical properties, with a capacity of 735 and 539 mA h g− 1 maintained at 1000 and 2000 mA g− 1, respectively. Furthermore, it exhibits favorable discharge/ charge cycle stability. This is probably because of the more chemically redox active sites provided by C@SnO2 nanocomposites and it also allows fast ion diffusion and electron migration.
4,000원
20.
2023.10 구독 인증기관 무료, 개인회원 유료
To study the effect of inorganic electrolyte solution on graphite flotation, 19 kinds of inorganic electrolytes, including nitrate, chloride and sulfate were selected as experimental electrolytes. The flotation experiment was carried out on graphite and the contact angle and surface potential of the interaction between inorganic electrolyte solution and graphite were studied. The results show that flotation effect and flotation rate of the three ion valence inorganic electrolytes follow the order: nitrate < chloride < sulfate and univalent < bivalent < trivalent (except Ba(NO3)2 and Pb(NO3)2). When the ion valence are the same, the larger the ion atomic number, the better effect on graphite flotation. Cations in inorganic electrolyte solutions are the main factors affecting mineral flotation. When the cationic type and concentration are the same, different flotation effects are attributed to different anions. For low ion valence inorganic electrolyte solution with weak foaming effect, a certain dose of frother can be added appropriately to improve the flotation effect of graphite. The high ion valence inorganic electrolyte solution has strong foaming effect, and it is not necessary to add a frother. The principle of inorganic electrolyte solution promoting graphite flotation is analyzed from the aspects of liquid phase property, gas–liquid interface property, contact angle and surface potential. It is proved that inorganic electrolyte solution as flotation medium can promote the effective flotation of graphite.
4,600원
1 2