논문 상세보기

Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt KCI 등재

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/428173
구독 기관 인증 시 무료 이용이 가능합니다. 4,300원
Carbon Letters (Carbon letters)
한국탄소학회 (Korean Carbon Society)
초록

Graphene oxide (GO) and ultrafine slag (UFS) have been applied to reinforce cement mortar cubes (CMC) in this research. The consequences of GO and UFS on the mechanical attributes of the CMC were explored through experimental investigations. Established on the results, at the 28 days of hydration, the CMC compressive and flexural strength with 0.03% of GO and 10% UFS were 89.8 N/mm2 and 9.1 N/mm2, respectively. Furthermore, the structural changes of CMC with GO and UFS were qualitatively analysed with instrumental techniques such as scanning electron microscope (SEM), X-ray fluorescence (XRF), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), FT Raman spectroscopy, atomic force microscopy (AFM), and 27Al, 29Si-Nuclear magnetic resonance spectroscopy (NMR). SEM results reported that GO and UFS formed an aggregated nanostructure that improved the microstructural properties of the CMC. TGA analysis revealed the quantum of calcium hydrate and bound water accomplished by supplementing GO bound to the UFS aggregates. FT-IR analysis of the CMC samples confirmed the ‘O-’comprising functional groups of GO which expedited the formation of complexes between calcium carbonate ( CaCO3) and UFS. 0.03% GO was the optimum dosage that enhanced the compressive and flexural attributes when combined with 10% UFS in CMC.

목차
Mechanical and microstructural properties of ultrafine slag cement mortar reinforced with graphene oxide nanosheets
    Abstract
    1 Introduction
    2 Materials, compositions, and instrumental analysis
        2.1 Materials and mix compositions
        2.2 Instrumental analysis
    3 Results and discussion
        3.1 Compression and flexure strength analysis
        3.2 Scanning electron microscope (SEM) analysis
        3.3 X-ray fluorescence spectroscopy (XRF) analysis
        3.4 Thermogravimetric analysis (TGA)
        3.5 Fourier transform infrared spectroscopy (FT-IR) analysis
        3.6 FT Raman spectrometer analysis
        3.7 Atomic force microscopy (AFM) analysis
        3.8 27Al and 29Si nuclear magnetic resonance analysis
    4 Conclusions
    Acknowledgements 
    References
저자
  • T. Yeswanth Sai(School of Civil Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India)
  • P. Jagadeesh(School of Civil Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India)