간행물

Carbon Letters KCI 등재 Carbon letters

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol.32 No.6 (2022년 10월) 18

1.
2022.10 구독 인증기관 무료, 개인회원 유료
Alzheimer's disease (AD) is one of the most common forms of dementia, affecting more than 50 million people globally. The onset of AD is linked to age, smoking, obesity, hypercholesterolemia, physical inactivity, depression, gender, and genetics of an individual. The accumulation of Aβ peptides and neurofibrillary tangles (NFTs) in the brain is one of the critical factors that lead to AD, which is known to disrupt neuronal signaling and causing neurodegeneration. As per the current understanding, inhibiting the accumulation of Aβ peptides and NFTs is crucial in the management/treatment of AD. Latest research studies show that nanoparticles have the potency of improving drug transport across the blood–brain barrier easily. Specifically, graphene quantum dots (GQDs), a type of semiconducting nanoparticles, have been established as effective inhibitors for blocking the aggregation of Aβ peptides. The small size of GQDs allows them to pass through the blood– brain barrier with ease. Moreover, GQDs have fluorescence properties, which can be used to detect the concentration of Aβ in vivo. In recent years, compared to other carbon materials, the low cytotoxicity and high biocompatibility of GQDs, give them an advantage in the suitability and clinical research for AD. In this manuscript, we have discussed the role of different types of nanoparticles in the transportation of encapsulated or co-assembled compound drugs for the treatment of AD and importantly, the role of GQDs in the diagnosis and management/treatment of AD.
4,600원
2.
2022.10 구독 인증기관 무료, 개인회원 유료
For graphene oxide (GO) composite hydrogels, a two-dimensional GO material is introduced into them, whose special structure is used to improve their properties. GO contains abundant oxygen-containing functional groups, which can improve the mechanical properties of hydrogels and support the application needs. Especially, the unique-conjugated structure of GO can endow or enhance the stimulation response of hydrogels. Therefore, GO composite hydrogels have a great potential in the field of wearable devices. We referred to the works published in recent years, and reviewed from these aspects: (a) structure of GO; (b) factors affecting the mechanical properties of the composite hydrogel, including hydrogen bond, ionic bond, coordination bond and physical crosslinking; (c) stimuli and signals; (d) challenges. Finally, we summarized the research progress of GO composite hydrogels in the field of wearable devices, and put forward some prospects.
4,900원
3.
2022.10 구독 인증기관 무료, 개인회원 유료
Graphene nanoplatelets (GNPs) have garnered significant attention in the field of thermal management materials due to their unique morphology and remarkable thermal conductive properties. Their impressive thermal properties make them an interesting choice of nanofillers with which to produce multifunctional composite materials and a host of other applications whilst their structural and thermal properties significantly improve their target materials or composites. Therefore, this present study reviewed recent advances in the use of GNPs as nanofillers to enhance the thermal conductivity of various materials or composites. The improved thermal conductivity that GNPs impart in composites is also comprehensively compared and discussed. Therefore, this review may reveal hitherto unknown opportunities and pave the way for the production of materials with enhanced thermal applications including electronics, aerospace devices, batteries, and structural reinforcement.
4,600원
4.
2022.10 구독 인증기관 무료, 개인회원 유료
Here, we have demonstrated the successful exfoliation of graphite into a layered material with scotch tape-like exfoliation. Sulfur acts as an exfoliating agent and exfoliates the loosely bounded graphite stacks. The shear force by ball milling provides the force required to overcome the van der Waals force between the layers. The MnO2 nanorods were synthesized using a KMnO4 precursor in a hydrothermal arrangement, and due to their intrinsic chemisorption capability, they were doped for polysulfide trapping. With an initial capacity of 1150 mAh/g achieved by the MnO2 nanorod-doped exfoliate-graphite/sulfur composite material, the material has displayed its application in lithium–sulfur batteries, but its use is not limited; it can be a low-cost eco-friendly solution to various energy storage systems with extensive structural qualities.
4,000원
5.
2022.10 구독 인증기관 무료, 개인회원 유료
Thermal management is significant to maintain the reliability and durability of electronic devices. Heat can be dissipated using thermal interface materials (TIMs) comprised of thermally conductive polymers and fillers. Furthermore, it is important to enhance the thermal conductivity of TIMs through the formation of a heat transfer pathway. This paper reports a polymer composite containing vertically aligned electrochemically exfoliated graphite (EEG). We modify the EEG via edge selective oxidation to decorate the surface with iron oxides and enhance the dispersibility of EEG in polymer resin. During the heat treatment and curing process, a magnetic field is applied to the polymer composites to align the iron oxide decorated EEG. The resulting polymer composite containing 25 wt% of filler has a remarkable thermal conductivity of 1.10 W m− 1 K− 1 after magnetic orientation. These results demonstrate that TIM can be designed with a small amount of filler by magnetic alignment to form an efficient heat transfer pathway.
4,000원
6.
2022.10 구독 인증기관 무료, 개인회원 유료
In this work, a nanocomposite containing gold (Au) nanofibers decorated iron-metal–organic framework (Fe-MOF) was successfully synthesized for electrochemical detection of acetaminophen (AAP). The as-synthesized Au@Fe-MOF nanocomposite was confirmed by various characterization techniques. Morphological analysis showed that the Au nanofibers with an average size of less than 10 nm were dispersed on the Fe-MOF. Cyclic voltammetric analysis showed that the Au@Fe-MOF nanocomposite showed well-defined redox peaks with higher current than that of GCE and Fe-MOF. The Au@Fe-MOF/ GCE exhibited a linear range, sensitivity, and detection limit of 0.5–18 μM, 4.95 μM/μA/cm2, and 0.12 μM, respectively. The Au@Fe-MOF/GCE showed a very low response for the interference materials. The real sample analysis revealed that the Au@Fe-MOF/GCE showed good recovery towards the AAP in urine and paracetamol. Therefore, the developed sensor can be used for quality control of AAP.
4,000원
7.
2022.10 구독 인증기관 무료, 개인회원 유료
To solve the problem of water pollution, researchers have proposed a photocatalytic degradation technology, in which the key factor is the development of efficient photocatalytic materials. Graphitic carbon nitride (g-C3N4), an n-type semiconductor, has been widely studied due to its suitable band gap (2.7 eV), low cost, easy preparation, non-toxicity, and high photostability. However, the pure-phase g-C3N4 still has defects such as low specific surface area, insufficient visible light absorption, low charge mobility, few active sites for interfacial reaction, and easy recombination of photogenerated electron–hole pairs, which leads to the lower photocatalytic activity of g-C3N4. Aiming at the problems mentioned above, this paper focus on the synthesis of g-C3N4-based composites with high photocatalytic activity via lemon juice induction method. Thiourea and lemon juice were selected as precursors, and carbon quantum dots (CQDs) as electron mediators were introduced anchoring on the surface of g-C3N4 to build g-C3N4/CQDs with compact interface. The results showed that small-sized CQDs are uniformly distributed on the surface of g-C3N4, and the g-C3N4/CQDs composite has a 2D0D structure, which reduces the recombination of photogenerated electron–hole pairs. The photocatalytic degradation efficiency of 4% g-C3N4/CQDs for RhB reaches the highest data of 90.9%, and the photocatalytic degradation rate is 0.016 min− 1, which is about 2.3 times that of g-C3N4. After four cycles of photocatalytic reaction, the photocatalytic degradation efficiency of the material remained at 81.7%. Therefore, the g-C3N4/CQDs synthesized via lemon juice induction has a more stable microstructure, and the charge separation efficiency is greatly improved, which is suitable for practical photocatalytic environmental protection.
4,300원
8.
2022.10 구독 인증기관 무료, 개인회원 유료
To address the need for a suitable thermoplastic resin-based sizing agent for accommodating the increasing demands of carbon fiber-reinforced plastic, in this work, alcohol-soluble polyamide 6 (PA6) and silane were chemically combined in a certain ratio to improve the mechanical interface properties of the carbon fiber/PA6 composite, and the enhancement in the mechanical interface strength of the final composite according to the treatment time was confirmed. Carbon fiber surface properties were analyzed through ultrahigh-resolution field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. The tensile strength of carbon fibers before and after hybrid sizing treatment and the mechanical interfacial shear strength of the final composite were analyzed using tensile and universal testing machines, respectively. After the hybrid sizing treatment, the introduction of the sizing agent to the carbon fiber surface was confirmed through FE-SEM, and a simultaneous increase in the surface roughness was observed. Moreover, the interfacial adhesion was confirmed to increase significantly, as compared to that of the desized carbon fiber. Therefore, this modified sizing agent treatment serves as an effective method for improving the mechanical interfacial adhesion between the carbon fiber and the PA6 matrix.
4,000원
9.
2022.10 구독 인증기관 무료, 개인회원 유료
A conventional porous carbon is still a very promising material for the removal of gaseous pollutants because of its abundant surface functional groups and a high specific surface area. Here, we prepared an environment-friendly uniform N-rich narrow micropore activated carbon, for the removal of formaldehyde, based on steam activation and N-rich with chitin as the starting material. A sample carbonized at 500 °C and steam activated at 800 °C (CAC800) showed a reasonable yield (55%) with uniform and narrow micropores without mesopores but having a balanced nitrogen functionality. CAC800 possesses outstanding formaldehyde removal capabilities under both dry and wet (humidity 45%) conditions. In addition, when compared with commercial activated carbon materials, we clearly demonstrated that the existence of high nitrogen content with uniform and narrow micropores simultaneously removed formaldehyde, effectively.
4,000원
10.
2022.10 구독 인증기관 무료, 개인회원 유료
An electrical double-layer capacitor is fabricated with biomass-derived activated carbon (AC) and multi-walled carbon nanotubes (MWCNTs), which are synthesized from Pongamia pinnata fruit shell and its seed oil, respectively. The activated carbon is produced by the chemical activation process at varying carbonization temperatures from 600 to 900 °C for 5 h at a rate of 10 min in an N2 atmosphere. The surface area of activated carbon and MWCNTs is 1170 m2 g− 1 and 216 m2 g− 1, respectively. The total pore volumes of activated carbon and MWCNTs are 1.51 cm3 g− 1 and 0.5907 cm3 g− 1, respectively. The as-prepared AC and MWCNTs are characterized by surface area analysis Brunner–Emmett–Teller method (BET), X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopic analysis, field emission scanning electron microscopy, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. The electrochemical performances of AC-AC, MWCNTs-MWCNTs and AC-MWCNTs (25:75) symmetric electrodes are studied by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. The AC-MWCNTs (25:75) single electrode performance is also studied in two different electrolytes, such as 0.5 M Na2SO4 and 0.5 M H2SO4. The fabricated AC-MWCNTs (25:75) symmetric supercapacitor cell exhibits excellent electrochemical performance in 0.5 M Na2SO4. It shows a specific capacitance of 55.51 Fg− 1, energy density 4.852 Wh Kg− 1 and power density of 199.18 W Kg− 1 at a current density of 1 Ag− 1 in the voltage window of 0–1.8 V. The AC-AC and AC-MWCNTs (25:75) symmetric supercapacitor electrodes show outstanding performance.
6,300원
11.
2022.10 구독 인증기관 무료, 개인회원 유료
The pitch-based activated carbon fibers (ACFs) were prepared from ethylene tar-derived pitches containing nickelocene (CNi) or nickel nitrate (NiN). The effects of different anions and contents of metal salts on the microstructure and surface chemical properties of fibers were investigated. The results revealed that Ni2+ from CNi mainly remained its pristine molecule in the organometal salt-derived pitch (OP-xCNi), while Ni2+ from NiN occurred complexation reaction with polycyclic aromatic hydrocarbons (PAHs) in the inorganic metal salt-derived pitch (IP-xNiN) due to the weaker binding ability between anions and Ni2+ of CNi than CNi. The XRD and SEM results confirmed that IP-3NiN-ACF contained Ni, NiO, Ni2O3 nanoparticles with different size distributions, while OP-3CNi-ACF only contained more uniformly distributed Ni nanoparticles with small size. Furthermore, OP-3.0CNi-ACF presented higher specific surface area of 1862 m2/ g and a pore volume of 1.69 cm3/ g than those of IP-3.0NiN-ACF due to the formation of pore structure during the in-situ catalytic activation of different metal nanoparticles. Therefore, this work further pointed out that the desired pore structure and surface chemistry of pitch-based ACFs could be obtained through regulating and controlling the interaction of anion species, metal cations and PAHs during the synthesis of pitch precursors.
4,300원
12.
2022.10 구독 인증기관 무료, 개인회원 유료
There is an ever growing interest in the development of biochar from a large variety of agrowastes. Herein, the main objective is the conversion of pomegranate peel powder biochar and its post-functionalization by phosphoric acid treatment, followed by arylation organic reaction. The latter was conducted using in situ-generated diazonium salts of 4-aminobenzoic acid ( H2N-C6H4-COOH), sulfanilic acid ( H2N-C6H4-SO3H) and Azure A dye. The effect of diazonium nature and concentration on the arylation process was monitored using thermal gravimetric analysis (TGA) and Raman spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). SEM pictures showed micrometer-sized biochar particles with tubular structure having about 10–20 μm-wide channels. SEM studies have shown that arylation did not affect the morphology upon arylation. The porous structure did not collapse and withstood the arylation organic reaction in acid medium did not collapse upon arylation. TGA and Raman indicated gradual changes in the arylation of biochar at initial concentrations 10– 5, 10– 4 and 10– 3 mol L− 1 of 4-aminobenzoic acid. The detailed Raman spectra peak fittings indicate that the D/G peak intensity ratio leveled off at 3.35 for 4-aminobenzoic acid initial concentration of 10– 4 mol L− 1, and no more change was observed, even at higher aryl group mass loading. This is in line with formation of oligoaryl grafts rather than the grafting of new aryl groups directly to the biochar surface. Interestingly, Azure A diazonium salt induced much lower extent of surface modification, likely due to steric hindrance. To the very best of our knowledge, this is the first report on diazonium modification of agrowaste-derived biochar and opens new avenues for arylated biochar and its applications.
4,200원
13.
2022.10 구독 인증기관 무료, 개인회원 유료
Enhancing the capacitive deionization performance requires the inner structure expansion of porous activated carbon to facilitate the charge storage and electrolyte penetration. This work aimed to modify the porosity of coconut-shell activated carbon (AC) through CO2 activation at high temperature. The electrochemical performance of CO2- activated AC electrodes was evaluated by cyclic voltammetry, charge/discharge test and electrochemical impedance spectroscopy, which exhibited that AC-800 had the superior performance with the highest capacitance of 112 F/g at the rate of 0.1 A/g and could operate for up to 4000 cycles. Furthermore, in the capacitive deionization, AC-800 showed salt removal of 9.15 mg/g with a high absorption rate of 2.8 mg/g min and Ni(II) removal of 5.32 mg/g with a rate close to 1 mg/g.min. The results promote the potential application of CO2- activated AC for desalination as well as Ni-removal through capacitance deionization (CDI) technology.
4,000원
14.
2022.10 구독 인증기관 무료, 개인회원 유료
In this work, we report a direct preparation of a few-walled carbon nanotube (FWCNTs) and NiMgAl composites namely FWCNT-NiMgAl by pyrolysis of waste high-density polyethylene (HDPE) plastic at 800 °C with NiMgAl-layered double hydroxide (LDH) as catalysts. The composite formation is carried out in a single step using our lab-developed pyrolysis reactor. The NiMgAl-LDH catalyst was prepared by co-precipitation method and the FWCNTs were grown on the NiMgAl-LDH catalyst with FWCNT yield of 10% and FWCNT-NiMgAl composite yield of 55% whose quality is determined by Raman ID/IG ratio of 2.57. The average outer and inner diameter of the FWCNT are found to be 5.5 nm and 2.9 nm, respectively, from TEM and 2.92 nm from the outer RBM (radial breathing mode) band, which indicates the formation of a few-walled CNTs. FWCNT-NiMgAl is used for the fabrication of flexible supercapacitor electrodes on a polyethylene terephthalate (PET) sheet which achieved a specific capacitance of 432 Fg− 1 in a wide potential range (ΔV = 2) at a scan rate of 5 mV s− 1 in 2 M KOH electrolyte with a high energy density of 240 Wh kg− 1, whereas NiMgAl displayed a capacitance of 200 Fg− 1 with an energy density of 111 Wh kg− 1. The diffusion-type charge storage mechanism (pseudocapacitance) is found to be dominant with contributions of 73.2% and 69.75% for NiMgAl and FWCNT-NiMgAl, respectively. The highest specific capacitance and energy density are obtained for NiMgAl in 2 M KCl and for FWCNT-NiMgAl in 2 M NaOH electrolytes. However, the largest potential window is observed in KOH electrolyte for both NiMgAl and FWCNT-NiMgAl with value of ΔV = 2 V. The electrode material shows good stability in acidic electrolytes and also shows good capacitive stability at high frequencies maintaining a phase angle of 70°. The present work is a novel approach to fabricate low-cost multifunctional carbon composite nanomaterials and will contribute to the research on low-cost waste-derived CNT composite preparation and its application in flexible energy storage devices.
5,100원
15.
2022.10 구독 인증기관 무료, 개인회원 유료
Few studies have been performed on ZrB2- graphite platelet composite made by spark plasma sintering (SPS) technique. In this research, the influence of adding graphite platelets (Gp) with and without SiC on the fracture toughness of ZrB2 ceramic was studied. The ZrB2- 10Gp, ZrB2- 15Gp, ZrB2- 30SiC-10Gp, and ZrB2- 30SiC-15Gp specimens were sintered by the SPS method at the temperature of 1850 °C for 8 min. The fracture toughness and work of fracture (WOF) were evaluated using the Single-Edge Notched Beam (SENB) technique. It was found that the fracture toughness and WOF were improved by the alone and combined addition of Gp and SiC to the monolithic ZrB2. The maximum fracture toughness of 4.8 ± 0.1 MPa m1/ 2 was obtained for the ZrB2- 15Gp specimen. It seems that adding Gp alone was more effective in enhancing the fracture toughness of ZrB2 than the combined addition of Gp and SiC. While the addition of Gp and SiC simultaneously modified the densification behavior to reach full-densified samples.
4,000원
16.
2022.10 구독 인증기관 무료, 개인회원 유료
The effect of the laser ablation duration of reduced graphene oxide sheets on their optical properties was studied. After 30 min of ablation, the average lateral size of reduced graphene oxide sheets decreases from 347.4 ± 86.5 nm to 98.8 ± 36.0. The sizes of almost all particles are in the range up to 100 nm, which was confirmed by transmission electron microscopy and dynamic light scattering data. The FTIR spectroscopy data showed that after ablation the intensity of the bands associated with O–H, C–OH and C=O vibrations were noticeably decreased. The optical density and the fluorescence intensity of reduced graphene oxide also depend on the ablation time. After ablation, the reduced graphene oxide fluorescence intensity increased 2–3 times. The fluorescence lifetime decreases both for the first (from 1.36 ns to 0.71 ns) and second (from 6.03 to 3.66 ns) components. A broad band was recorded in the long-lived luminescence spectrum. The long-lived luminescence intensity is higher on 80% for the samples after 30 min of ablation compared to the unablated sample. It was assumed that during laser ablation of reduced graphene oxide a change in the ratio between oxidized and sp2- hybridized carbon occurs. This opens up possibilities for controlling the optical properties of reduced graphene oxide.
4,000원
17.
2022.10 구독 인증기관 무료, 개인회원 유료
The biocarbon (SKPH) was obtained from Sargassum spp., and it was evaluated electrochemically as support for the CO2 reduction. The biocarbon was synthesized and activated with KOH, obtaining a high surface area (1600 m2 g− 1) due to the activation process. Graphitic carbon formation after pyrolysis was confirmed by Raman spectroscopy. The XRD results show that SKPH has an amorphous structure with peaks corresponding to typical amorphous carbonaceous materials. FTIR was used to determine the chemical structure of SKPH. The bands at 3426, 2981, 2851, and 1604 cm− 1 correspond to O–H, C-H, and C-O stretching vibrations, respectively. Then, it compares SKPH films with different carbon films using two electrolytic systems with and without charge transfer. The SKPH film showed a capacitive behavior in the KOH, H2SO4, and, KCl systems; in the acid medium, the presence of a redox couple associated with carbon functional groups was shown. Likewise, in the [Fe(CN)6]−3 and Cu(II) systems, the charge transfer process coupled with a capacitive behavior was described, and this effect is more noticeable in the [Fe(CN)6]−3 system. Electrodeposition of copper on SKPH film showed two stages Cu(NH 3)2+ 4 /Cu(NH 3)+ 2 and Cu(NH 3)+ 2 ∕Cu in ammonia media. Hydrogen formation and the activity of CO2 are observed on SKPH film and are favored by the carbon’s surface chemistry. Cu/SKPH electrocatalyst has a catalytic effect on electrochemical reduction of CO2 and inhibition of hydrogen formation. This study showed that the SKPH film electrode responds as a capacitive material that can be used as an electrode for energy storage or as metal support.
4,900원
18.
2022.10 구독 인증기관 무료, 개인회원 유료
The aim and originality of our current study are to use the original biomass (activated carbon) obtained by functionalizing waste banana peels (commonly found in Turkey) with acid in NaBH4 methanolysis and to examine its contribution to the hydrogen generation rate (HGR). Our study consisted of three stages. In the first stage, the optimum conditions were determined by examining the catalyst under parameters such as different acid types, different carbonization temperatures, and different carbonization times. Thus, based on the maximum HGR value, the optimum conditions were determined as H3PO4, 600 °C, and 40 min. In the second step, the effects of parameters such as acid concentration, NaBH4 concentration, catalyst amount, and temperature on HGR were investigated. As a result of methanolysis experiments (condition: catalyst amount: 100 mg, acid amount: 30%, NaBH4 concentration: 2.5%, temperature: 30 °C, carbonization temperature: 400 °C, and carbonization time: 40 min.), the maximum HGR value, the reaction completion time and activation energy were found as 65,625 mLmin− 1gcat−1, 0.233 min, and 4.56 kJ/mol, respectively. It was observed that the obtained activation energy was lower than that of some catalysts available in the literature. In addition, the structural and morphological examination of the banana peel (catalyst) with high HGR and low activation energy revealed that the acid functionalization process was successfully carried out.
4,000원