간행물

Carbon Letters KCI 등재 Carbon letters

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol.24 (2017년 10월) 15

1.
2017.10 구독 인증기관 무료, 개인회원 유료
We studied the basic properties and fabrication of reduced graphene oxide (rGO) prepared using eco-friendly reduction agents in the graphene solution process. Hydrazine is generally used to reduce graphene oxide (GO), which results in polluting emissions as well as fixed nitrogen functional groups on different defects in the graphene sheets. To replace hydrazine, we developed eco-friendly reduction agents with similar or better reducing properties, and selected of them for further analysis. In this study, GO layers were produced from graphite flakes using a modified Hummer’s method, and rGO layers were reduced using hydrazine hydrate, L-ascorbic acid, and gluconic acid. We measured the particle sizes and the dispersion stabilities in the rGO dispersed solvents for the three agents and analyzed the structural, electrical, and optical properties of the rGO films. The results showed that the degree of reduction was in the order L-ascorbic acid ≥ hydrazine > glucose. GO reduced using L-ascorbic acid had a sheet resistance of 121 kΩ/sq, while that reduced using gluconic acid showed worse electrical properties than the other two reduction agents. Therefore, L-ascorbic acid is the most suitable eco-friendly reduction agent that can be substituted for hydrazine.
4,000원
2.
2017.10 구독 인증기관 무료, 개인회원 유료
With continuous development in the field of sample preparation technology, solid phase micro-extraction (SPME) has been widely used in analytical chemistry for high extraction efficiency and convenient operation. Different materials lead to different extraction results. Among existing materials, carbon-based materials are still attracting attention from scientists due to their excellent physical and chemical properties as well as their modifiable surfaces, which could enhance the adsorption effects of SPME fiber. This review introduces the preparation methods and applications of different kinds of carbon-based material coatings on fibers. In addition, directions for future research on carbon material composites are discussed.
4,000원
3.
2017.10 구독 인증기관 무료, 개인회원 유료
Multiwall carbon nanotubes (MWCNT) with two different (L/D) aspect ratios (7±2 μm/140±30 nm and 0.5–2 μm/8–15 nm) were surface treated using nitric acid (HNO3) and polyethyleneimine (PEI) prior to their deposition on carbon fibers (CF). Before the hierarchical reinforcement with CF-MWCNT, the CFs were treated with 3-glycidoxypropyltrimethoxysilane, a coupling agent (Z6040) and with poly(amidoamine) (PAMAM) a dendrimer containing an ethylenediamine core and amine surface groups. The MWCNT were deposited on the CF using two methods, by electrostatic attraction and by chemical reactions. The changes in the CF surface morphology after the MWCNT deposition were analyzed using SEM, which revealed a higher density and uniform coverage for the PAMAM-treated CF and the short MWCNTs. The interfacial adhesion of the composite materials was evaluated using the single fiber fragmentation technique. The results indicated an improvement in the interfacial shear strength with the addition of the short-MWCNTs treated with acid solutions and grafted onto the surface of the CF fiber using electrostatic attraction.
4,000원
4.
2017.10 구독 인증기관 무료, 개인회원 유료
We demonstrated an effective way of preparing melt spinnable mesophase pitches via catalytic hydrogenation of petroleum residue (fluidized catalytic cracking-decant oil) and their subsequent thermal soaking. The mesophase pitches thus obtained were analyzed in terms of their viscosity, elemental composition, solubility, molecular weight, softening point and optical texture. We found that zeolite-induced catalytic hydrogenation under high hydrogen pressure contributed to a large variation in the properties of the pitches. As the hydrogen pressure increased, the C/H ratio decreased, and the solubility in n-hexane increased. The mesophase pitch with entirely anisotropic domains of flow texture exhibited good meltspinnability. The mesophase carbon fibers obtained from the catalytically hydrogenated petroleum residue showed moderate mechanical properties.
4,000원
5.
2017.10 구독 인증기관 무료, 개인회원 유료
Polyacrylonitrile/pitch nanofibers were prepared by electrospinning as a precursor for a gas sensor material. Pitch nanofibers were properly fabricated by incorporating polyacrylonitrile as an electrospinning supplement component. Polyacrylonitrile/pitch nanofibers were activated with steam at various temperatures followed by subsequent carbonization to make carbon nanofibers with a highly conductive graphitic structure. Steam activation was effective in facilitating gas adsorption onto the carbon nanofibers due to the increased surface area. The carbon nanofibers activated at 800°C had a larger surface area and a lower micro pore fraction resulting in a higher variation in electrical resistance for improved CO gas sensing properties.
4,000원
6.
2017.10 구독 인증기관 무료, 개인회원 유료
The microstructure, flexural properties, electrical conductivity, thermal conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) of epoxy composites filled with multi-walled carbon nanotubes (CNTs), exfoliated graphite nanoplatelets (xGnPs) and CNT-xGnP hybrid filler were investigated. The EMI SE of the CNT-xGnP hybrid composite was higher than 25 dB at 100 MHz while that of the xGnP based composite was almost zero. The flexural modulus of the CNT-xGnP based epoxy composite continuously increased to 3.32 GPa with combined filler content up to 10 wt% while that of the CNT based epoxy composites slightly decreased to 1.96 GPa at 4 wt% CNT, and dropped to 1.57 GPa at 5 wt% loading, which is lower than that of epoxy. The CNT and CNT-xGnP samples had the same EMI SE at the same surface resistivity, because samples with the same surface conductivity have the same amount of the charge carriers.
4,000원
7.
2017.10 구독 인증기관 무료, 개인회원 유료
Different phytochemicals obtained from various natural plant sources are used as reduction agents for preparing gold, copper, silver and platinum nanoparticles. In this work a green method of reducing graphene oxide (rGO) by an inexpensive, effective and scalable method using olive leaf aqueous extract as the reducing agent, was used to produce rGO. Both GO and rGO were prepared and investigated by ultraviolet and visible spectroscopy, Fourier-transform infrared, scanning electron microscopy, atomic force microscopy, thermogravimetric analysis, cyclic voltammetry, X-ray photoelectron spectra, electrochemical impedance spectroscopy and powder X-ray diffraction.
4,000원
8.
2017.10 구독 인증기관 무료, 개인회원 유료
Carbon micropatterns (CMs) were fabricated from a negative-type SU-8 photoresist by proton ion beam lithography and pyrolysis. Well-defined negative-type SU-8 micropatterns were formed by proton ion beam lithography at the optimized fluence of 1×1015 ions cm–2 and then pyrolyzed to form CMs. The crosslinked network structures formed by proton irradiation were converted to pseudo-graphitic structures by pyrolysis. The fabricated CMs showed a good electrical conductivity of 1.58×102 S cm–1 and a very low surface roughness.
4,000원
9.
2017.10 구독 인증기관 무료, 개인회원 유료
The aim of this work was to evaluate the dielectric properties of impregnated and activated palm kernel shells (PKSs) samples using two activating agents, potassium carbonate (K2CO3) and sodium hydroxide (NaOH), at three impregnation ratios. The materials were characterized by moisture content, carbon content, ash content, thermal profile and functional groups. The dielectric properties were examined using an open-ended coaxial probe method at various microwave frequencies (1–6 GHz) and temperatures (25, 35, and 45°C). The results show that the dielectric properties varied with frequency, temperature, moisture content, carbon content and mass ratio of the ionic solids. PKSK1.75 (PKS impregnated with K2CO3 at a mass ratio of 1.75) and PKSN1.5 (PKS impregnated with NaOH at a mass ratio of 1.5) exhibited a high loss tangent (tan δ) indicating the effectiveness of these materials to be heated by microwaves. K2CO3 and NaOH can act as a microwave absorber to enhance the efficiency of microwave heating for low loss PKSs. Materials with a high moisture content exhibit a high loss tangent but low penetration depth. The interplay of multiple operating frequencies is suggested to promote better microwave heating by considering the changes in the materials characteristics.
4,200원
10.
2017.10 구독 인증기관 무료, 개인회원 유료
Interconnected meso/microporous activated carbons were prepared from pumpkin seeds using a simple chemical activation method. The porous carbon materials were prepared at different temperatures (PS-600, PS-700, PS-800, and PS-900) and demonstrated huge surface areas (645–2029 m2 g–1) with excellent pore volumes (0.27–1.30 cm3 g–1). The wellcondensed graphitic structure of the prepared activated carbon materials was confirmed by Raman and X-ray diffraction analyses. The presence of heteroatoms (O and N) in the carbon materials was confirmed by X-ray photoemission spectroscopy. High resolution transmission electron microscopic images and selected area diffraction patters further revealed the porous structure and amorphous nature of the prepared electrode materials. The resultant porous carbons (PS-600, PS-700, PS-800, and PS-900) were utilized as electrode material for supercapacitors. To our delight, the PS-900 demonstrated a maximum specific capacitance (Cs) of 303 F g–1 in 1.0 M H2SO4 at a scan rate of 5 mV. The electrochemical impedance spectra confirmed the poor electrical resistance of the electrode materials. Moreover, the stability of the PS-900 was found to be excellent (no significant change in the Cs even after 6000 cycles).
4,000원
11.
2017.10 구독 인증기관 무료, 개인회원 유료
In this study, composite PAN-based ACNFs embedded with MgO and MnO2 were prepared by the electrospinning method. The resultant pristine ACNFs, ACNF/MgO and ACNF/MnO2 were characterized in terms of their morphological changes, SSA, crystallinity and functional group with FESEM-EDX, the BET method, XRD and FTIR analysis, respectively. Results from this study showed that the SSA of the ACNF/MgO composite (1893 m2 g–1) is significantly higher than that of the pristine ACNFs and ACNF/MnO2 which is 478 and 430 m2 g–1, respectively. FTIR analysis showed peaks of 476 and 547 cm–1, indicating the presence of MgO and MnO2, respectively. The FESEM micrographs analysis showed a smooth but coarser structure in all the ACNFs. Meanwhile, the ACNF/MgO has the smallest fiber diameter (314.38±62.42 nm) compared to other ACNFs. The presence of MgO and MnO2 inside the ACNFs was also confirmed with EDX analysis as well as XRD. The adsorption capacities of each ACNF toward CH4 were tested with the volumetric adsorption method in which the ACNF/MgO exhibited the highest CH4 adsorption up to 2.39 mmol g–1. Meanwhile, all the ACNF samples followed the pseudo-second order kinetic model with a R2 up to 0.9996.
4,000원
12.
2017.10 구독 인증기관 무료, 개인회원 유료
We demonstrated the sensitivity of optically active single-walled carbon nanotubes (SWCNTs) with a diameter below 1 nm that were homogeneously dispersed in cement composites under a mechanical load. Deoxyribonucleic acid (DNA) was selected as the dispersing agent to achieve a homogeneous dispersion of SWCNTs in an aqueous solution, and the dispersion state of the SWCNTs were characterized using various optical tools. It was found that the addition of a large amount of DNA prohibited the structural evolution of calcium hydroxide and calcium silicate hydrate. Based on the in-situ Raman and X-ray diffraction studies, it was evident that hydrophilic functional groups within the DNA strongly retarded the hydration reaction. The optimum amount of DNA with respect to the cement was found to be 0.05 wt%. The strong Raman signals coming from the SWCNTs entrapped in the cement composites enabled us to understand their dispersion state within the cement as well as their interfacial interaction. The G and G’ bands of the SWCNTs sensitively varied under mechanical compression. Our results indicate that an extremely small amount of SWCNTs can be used as an optical strain sensor if they are homogeneously dispersed within cement composites.
4,000원
13.
2017.10 구독 인증기관 무료, 개인회원 유료
Graphite fibers are materials with a high specific modulus that have attracted much interest in the aerospace industry, but their high manufacturing cost and low yield are still problems that prevent their wide applications in practice. This paper presents a laser-based process for graphitization of carbon fiber (CF) and explores the effect of laser radiation on the microstructure of CF. The obtained Raman spectra indicate that the outer surface of CF evolves from turbostratic structures into a three-dimensional ordered state after being irradiated by a laser. The X-ray diffraction data revealed that the growth of crystallite was parallel to the fiber axis, and the interlayer spacing d002 decreased from 0.353 to 0.345 nm. The results of scanning electron microscopy revealed that the surface of irradiated CFs was rougher than that of the unirradiated ones and there were scale-like small fragments that had peeled off from the fibers. The tensile modulus increased by 17.51% and the Weibull average tensile strength decreased by 30.53% after being irradiated by a laser. These results demonstrate that the laser irradiation was able to increase the graphitization degree of the CFs, which showed some properties comparable to graphite fibers.
4,000원
14.
2017.10 구독 인증기관 무료, 개인회원 유료
Carbon-based magnetic nanostructures in several instances have resulted in improved physicochemical and catalytic properties when compared to multi-wall carbon nanotubes (MWCNTs) and magnetic nanoparticles. In this study, magnetic MWCNTs with a structure of NixZnxFe2O4/MWCNT as peroxidase mimics were fabricated by the one-pot hydrothermal method. The structure, composition and morphology of the nanocomposites were characterized with X-ray diffraction (XRD), Fourier transform infrared spectroscopy and transmission electron microscopy. The magnetic properties were investigated with a vibrating sample magnetometer. The peroxidase-like catalytic activity of the nanocomposites was investigated by colorimetric and electrochemical tests with 3,3´,5,5´-tetramethylbenzidine (TMB) and H2O2 as the substrates. The results show that the synthesis of the nanocomposites was successfully performed. XRD analysis confirmed the crystalline structures of the NixZnxFe2O4/ MWCNT nanohybrids and MWCNTs. The main peaks of the NixZnxFe2O4/MWCNTs crystals were presented. The Ni0.25Zn0.25Fe2O4/MWCNT and Ni0.5Zn0.5Fe2O4/MWCNT nanocatalysts showed nearly similar physicochemical properties, but the Ni0.5Zn0.5Fe2O4/MWCNT nanocatalyst was more appropriate than the Ni0.25Zn0.25Fe2O4/MWCNT nanocatalyst in terms of the magnetic properties and catalytic activity. The optimum peroxidase-like activity of the nanocatalysts was obtained at pH 3.0. The Ni0.5Zn0.5Fe2O4/MWCNT nanocatalyst exhibited a good peroxidase-like activity. These magnetic nanocatalysts can be suitable candidates for future enzyme-based applications such as the detection of glucose and H2O2.
4,000원