간행물

Carbon Letters KCI 등재 Carbon letters

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol.8 No.3 (2007년 9월) 7

1.
2007.09 구독 인증기관 무료, 개인회원 유료
[ TiO2 ]ACF composites were prepared by the electrochemical method with Titanium (IV) n-butoxide (TNB) electrolyte under different electrochemical operation time. The BET surface area for TiO2/ACF composites decrease with the increase of electrochemical operation time. There is a single crystal structure which is anatase in all of the samples from the data of XRD. The SEM micrphotographs of TiO2/ACF composites show that the TiO2 particles were well mixed with the ACF. There are O and P with strong C and Ti peaks in all samples from EDX results, and it also shows that a decrease of the C content with a increasing of Ti content with increasing of the electrochemical operation time in the over all composites. DSC cures show that the exothermic peak of all composites at 560℃ represents the transformation heat of amorphous parts to anatase phase and the discontinuous grain growth of the transformed anatase particles. Finally, the excellent photoactivity of TiO2/ACF composites (especially, ACFT10) could be attributed that the decrease of concentration of MB can be concluded to be much faster for the adsorption by ACF than for photocatalytic decomposition by TiO2.
4,000원
2.
2007.09 구독 인증기관 무료, 개인회원 유료
Carbon Nano Tubes could be either metallic or semi-conducting in nature, depending on their diameter. Its photocatalytic behavior has given an impetus to use it as an anti-microbial agent. More than 95% Escherichia coli and Staphylococcus aureus bacteria got killed when exposed to Carbon Nano Tubes for 30 minutes in presence of sunlight. Carbon Nano Tubes are supposed to have smooth surface on to which it accumulates positive charges when exposed to light. The surface that is non illuminated has negative charge. At the cellular level microorganisms produce negative charges on the cell membrane, Therefore damaging effect of multi walled carbon nano tubes (exposed to light) on the microorganisms is possible. In this paper, photo catalytic killing of microbes by multi walled carbon nano tubes is reported. Killing was due to damage in the cell membrane, as seen in SEM micrographs. Moreover biochemical analysis of membrane as well as total cellular proteins by SDS PAGE showed that there was denaturation of membrane proteins as well as total proteins of both the microbes studied. The killed microbes that showed a decrease in number of protein bands (i.e. due to breaking down of proteins) also showed an increase in level of free amino acids in microbes. This further confirmed that proteins got denatured or broken down into shorter units of amino acids. Increased level of free amino acids was recorded in both the microbes treated with multi walled carbon nano tubes and sunlight.
4,000원
3.
2007.09 구독 인증기관 무료, 개인회원 유료
Recent studies have revealed the poisonous nature of aluminum(III) species to aquatic and terrestrial organisms. Therefore, this investigation aims to develop batch adsorption experiments in the laboratory, aiming to the removal of aluminum(III) from aqueous solutions onto powdered activated carbon (PAC). The latter (which is an effective and inexpensive sorbent) was prepared from olive stones generated as plant wastes and modified with an aqueous modifying oxidizing agent, viz. HNO3. The main parameters (i.e. initial solution pH, sorbent and Al3+ ions concentrations, stirring times and temperature) influencing the sorption process were examined. The results obtained revealed that the sorption of Al3+ ions onto PAC is endothermic in nature and follows first-order kinetics. The adsorption data were well described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption models over the concentration range studied. Under the optimum experimental conditions employed, the removal of ca. 100% Al3+ ions in the concentration range 1.35-2.75 mg·l-1 was attained. Moreover, the procedure was successfully applied to the recovery of aluminum spiked to some environmental water samples with an RSD (%), does not exceed 1.22%.
4,000원
4.
2007.09 구독 인증기관 무료, 개인회원 유료
The activated carbon produced from rubber wood sawdust by chemical activation using phosphoric acid have been utilized as an adsorbent for the removal of Cu(II) from aqueous solution in the concentration range 5-40 mg/l. Adsorption experiments were carried out in a batch process and various experimental parameters such as effect of contact time, initial copper ion concentration, carbon dosage, and pH on percentage removal have been studied. Adsorption results obtained for activated carbon from rubber wood sawdust were compared with the results of commercial activated carbon (CAC). The adsorption on activated carbon samples increased with contact time and attained maximum value at 3 h for CAC and 4 h for PAC. The adsorption results show that the copper uptake increased with increasing pH, the optimum efficiency being attained at pH 6. The precipitation of copper hydroxide occurred when pH of the adsorbate solution was greater than 6. The equilibrium data were fitted using Langmuir and Freundlich adsorption isotherm equation. The kinetics of sorption of the copper ion has been analyzed by two kinetic models, namely, the pseudo first order and pseudo second order kinetic model. The adsorption constants and rate constants for the models have been determined. The process follows pseudo second order kinetics and the results indicated that the Langmuir model gave a better fit to the experimental data than the Freundlich model. It was concluded that activated carbon produced using phosphoric acid has higher adsorption capacity when compared to CAC.
4,000원
5.
2007.09 구독 인증기관 무료, 개인회원 유료
The properties and electrochemical characteristics of anode material using pitch-coated graphite residue compounds by heat-treatment at 600℃ for 1 hour were investigated. The distance of layers of pitch-coated graphite residual compounds was 3.3539 a, which was as same as that of graphite. Its electrochemical and charge discharge characteristics were tested according to different four types of carbon material, natural graphite, pitch-coated graphite, amorphous graphite and pitch-coated graphite residual compounds, respectively. So it was shown the best charge-discharge characteristics in all of the samples. For the electrochemical and charge-discharge characteristics, although pitch-coated graphite residual compounds had different carbon contents 70% and 80%, these two samples were shown good electrochemical and charge-discharge characteristics.
4,000원
6.
2007.09 구독 인증기관 무료, 개인회원 유료
The field of photocatalysis is one of the fastest growing areas both in research and commercial fields. Titanium dioxide is the most investigated semi-conductor material for the photocatalysis applications. Research to achieve TiO2 visible light activation has drawn enormous attentions because of its potential to use solar light. This paper reviews the attempts made to extend its visible photocatalytic activity by carbon doping. Various approaches adopted to incorporate carbon to TiO2 are summarized highlighting the major developments in this active research field. Theoretical features on carbon doping are also presented. Future scenario in the rapidly developing and exciting area is outlined for practical applications with solar light.
4,200원