The regional bio-wastes available in abundance in India were converted into porous carbon by heat treatment at different temperatures from 650-950℃. The wood retain shapes after pyrolysis though shrinkage occured both in axial and radial directions. The shrinkage in radial direction was found to be more than in axial direction in all woods. The density of woods and chars from these at a given temperature has been found to follow linear relationship. Chars were steam activated at temperature 700-800℃ for different times between 45-240 min. Both the temperature and time of activation with steam has a profound effect on surface area. Chars from softwoods like bagasse and castor oil plant were activated at lower temperature, i.e. 700-750℃ whereas hard wood chars have to be activated at higher temperature around 800℃. The morphology of wood as well as of chars has been studied by SEM. The comparison of the two showed that the nature of porosity in chars depends on precursor morphology, nature and physical state of wood and presence of inorganic compounds in the wood. Hard wood results in cross inter connected pores while softwood leads to fibriller structure. The present studies show that activated carbon with reasonably good surface area (~1000m2/gm) can be prepared from soft wood bio-wastes like bagasse and castor oil plant, while surface area ~1370m2/gm was achieved from hard wood bio waste of pine wood.
A study on the electrosorption of Co2+ and Sr2+ ions onto a porous activated carbon fiber (ACF) was performed to treat radioactive liquid wastes resulting from chemical or electrochemical decontamination and to regenerate the spent carbon electrode. The result of batch electrosorption experiments showed that applied negative potential increased adsorption kinetics and capacity in comparison with open-circuit potential (OCP) adsorption for Co2+ and Sr2+ ions. The adsorbed Co2+ and Sr2+ ions are released from the carbon fiber by applying a positive potential on the electrode, showing the reversibility of the sorption process. The possibility of application of the electrosorption technique to the separation of radionuclides was examined. The result of a selective removal experiments of a single component from a mixed solution showed that perfect separation of Co2+ and Sr2+ ions was possible by the electrosorption process.
The modification of coal-tar pitch has been carried out by heat treatment of pitch at different temperatures in the range (300˚-400℃) for different times (2-5 hrs) in air and nitrogen. The pitch heat treated in air at lower temperature (300℃) exhibit increase in softening point by 20℃ as compared to only 2℃ when treated in nitrogen. The changes are faster in air than in pure nitrogen. Pitch as such as well as after heat treatment were further treated with metal complexes by solution route. Silver intake has been found to increase from 0.5 to 0.8 % in nitrogen treated pitch while the uptake is found to decrease for pitches treated in air at 350℃ for 5 hrs. Experiments have also been made to incorporate silver into PAN and PAN-ox fibers through solution route. The metal intake has been found to be more in PAN-ox fibers than in PAN as such. Metal loaded carbon composites have been made by using metal loaded fibers as well as cokes. These composites as such exhibit higher surface oxygen complexes but decrease after activation.
The electrochemical behavior of the LiCoO2 electrode, containing carbon black as a conductor, depends upon the nature and characteristics of carbon black. In this study, six different kinds of carbon blacks were employed to investigate the relationship between the properties of carbon blacks and electrochemical characteristics of the electrode. The larger amount of surface oxygen functional groups brought the lower electrical conductivity for the carbon blacks. The electrical conductivity of carbon blacks was closely related to the impurities such as ash and volatile content. The rate capability and cyclability of the electrode were improved with the higher conductivity of carbon blacks used. So, it can be concluded that high conductive carbon black plays an important role as a conductor for high rate of charge-discharge capability and initial efficiency.
Aligned multi-wall carbon nanotubes (MWNTs) were synthesized through the catalytic decomposition of hydrocarbons in a quartz tube reactor. In this study, we investigated the influence of reaction parameters such as gas flow rate, ferrocene-xylene ratio and partial pressure, and reaction time on the yield and structure of vertically aligned carbon nanotubes produced by the floating catalyst method. The MWNTs produced had diameters in the range of 20~l00 nm, length around 100μm and bulk density about 0.51g/cm3 at a pressure of l0000 psi. It was possible to produce MWNTs with much faster growth rate of 12μm/min than that reported previously by the increase of ferrocene-xylene partial pressure.
Petroleum based isotropic pitch was spun into short fiber by melt-blown spinning technology. The processing parameters chosen were air velocity, die temperature, and throughput rate of the pitch within the ranges of experimental tolerances. The fiber diameter was reduced to 6μm by increases of hot air velocity, and spin die temperature. Also, the fiber diameter was strongly dependent on the throughput rate of the pitch and jet speed of hot air through the spinnerets. Even fibers with 10μm diameter were produced at throughput rate of 0.17g/min·hole and at die temperature of 290℃.