Silicon carbide (β-SiC) was synthesized through an improved sol–gel method, then Ni/SiC catalysts were prepared using a hydrothermal method. The catalysts were characterized using TEM, H2- TPR, CO2- TPD and N2- TPD, etc. The results showed that the synthesized β-SiC had a large specific surface area, promoting the dispersion of Ni species and thus exposing more active sites. The interaction between Ni species and β-SiC contributed significantly to catalytic performance. Furthermore, the strong alkalinity of catalyst could adjust the bond energy of the active metal and N (M–N), which were conducive to desorption of the recombinant N2 from the metal surface, promoting to ammonia decomposition. Among the Ni/SiC catalysts, 30Ni/SiC-700 synthesized with the Ni loading of 30 wt% and calcination temperature of 700 °C, exhibited the optimal ammonia conversion rate of 93.4% at 600 °C under the space speed of 30,000 mL∙gcat −1∙h−1, and demonstrated a long-term stability, suggesting a very promising catalyst in ammonia decomposition.
Complex structure constituting of several layers of heteroatom-doped N-CDs are used as a main sensing film along with aluminum electrodes in conductometric gas sensing system for sensitive and selective monitoring of CO2 and CO gases diluted with normal air, which are extensively prevalent in the atmosphere primarily due to the industrial revolution, locomotives, and numerous natural phenomena’s and the limit of detection (LOD) turned out to be 400 ppm and 30 ppm, respectively, with 20% relative humidity at 30 °C and pressure 1 (atm) which are good for healthy air quality checks. The sensor performance was satisfactory and bidirectional at ambient room temperature (30 °C) and pressure (1 atm) conditions but the relative humidity (50%) at 30 °C had a detrimental impact on the sensing responses, therefore intermittent heating at 80 °C for several minutes between the sensing responses was provided to the sensing chip or one should use gas filter membranes to block humidity, thereby maintaining its constant performance with great ease and accuracy. The cyclic voltammetry revealed well-defined oxidation and reduction peaks, with excellent stability and reversibility. In a nutshell, heteroatom-doped N-CDs’ nanocomposite material can revolutionize in a better environmental pollution monitoring by sensing gases in an extensively lesser response and recovery times.
In recent years, the search on fabrication of highly efficient, stable, and cost-effective alternative to Pt for the hydrogen evolution reaction (HER) has led to the development of new catalysts. In this study, we investigated the electrocatalytic HER activity of the Toray carbon substrate by creating defect sites in its graphitic layer through ultrasonication and anodization process. A series of Toray carbon substrates with active sites are prepared by modifying its surface through ultrasonication, anodization, and ultrasonication followed by anodization procedures at different time periods. The anodization process significantly enhances the surface wettability, consequently resulting in a substantial increase in proton flux at the reaction sites. As an implication, the overpotential for HER is notably reduced for the Toray carbon (TC-3U-10A), subjected to 3 min of ultrasonification followed by 10 min of anodization, which exhibits a significantly lower Tafel slope value of 60 mV/dec. Furthermore, the reactivity of the anodized surface for HER is significantly elevated, especially at higher concentrations of sulfuric acid, owing to the enhanced wettability of the substrate. The lowest Tafel slope value recorded in this study stands at 60 mV/dec underscoring the substantial improvements achieved in catalytic efficiency of the defect-rich carbon materials. These findings hold promise for the advancement of electrocatalytic applications of carbon materials and may have significant implications for various technological and industrial processes.
Coal tar pitch is a raw material that can be made from various carbon materials such as activated carbon, carbon fiber, and artificial graphite through heat treatment. In particular, it is an important raw material used as a binder and impregnated pitch when manufacturing carbon composite materials. In order to improve the physical properties of such a carbon composite material, the content of β-resin is an important factor. Although β-resin plays the role of a binder, it also corresponds to fixed carbon, so it can determine the physical properties after carbonization. In this study, we compared the physical properties of coal tar pitch various temperature ramping rate, and found through Py-GC/MS analysis that intermediate materials were generated by heteroatoms such as oxygen and nitrogen. MALDI-TOF/MS analysis revealed that these intermediate materials overlapped with the molecular weight region of β-resin. Therefore, the content of β-resin is in the following order: 430–5 (12.8 wt%), 430–10 (10.2 wt%), and 430–2 (6.3 wt%), and when 430–5 is used as a binder, the highest density appeared at 1.75 g/cm3. However, such intermediate materials undergo thermal decomposition even at temperatures above 900 °C. As a result, after carbonization, 430–5 had a density of 1.60 g/cm3, which was similar or lower than that of 430–2 (1.72 → 1.63 g/ cm3) and 430–10 (1.73 → 1.61 g/cm3). From these results, it is expected that if the heteroatom content is distributed in an appropriate amount and the heating rate is well controlled, it will be possible to maintain a high density even after carbonization while ensuring a high beta-resin content.
Graphitic nitrogen-doped carbon film/nanoparticle composite, in which the films were wrapped and separated by the nanoparticles, was prepared through a simple co-calcination route. Due to its unique porous structure and improved nitrogen content, the as-prepared electrode material could exhibit high specific capacitances of 317.5 F g− 1 at 0.5 A g− 1 and 200.0 F g− 1 at 20 A g− 1, and stable cycling behavior with no capacitance decline after 10,000 cycles in three-electrode system. When assembled in two-electrode capacitor, its specific capacitance could be well kept at 265.5 F g− 1 at 0.5 A g− 1, and thus the supercapacitor with a high energy density of 9.22 Wh kg− 1 was obtained. The superior energy storage properties of the as-prepared material indicate its promising application as high-performance carbon-based electrode for supercapacitors.
Crystalline heptazine carbon nitride (HCN) is an ideal photocatalyst for photocatalytic ammonia synthesis. However, the limited response to visible light has hindered its further development. As a noble metal, Au nanoparticles (NPs) can enhance the light absorption capability of photocatalysts by the surface plasmon resonance (SPR) effect. Therefore, a series of Au NPs-loaded crystalline carbon nitride materials (AH) were prepared for photocatalytic nitrogen fixation. The results showed that the AH displayed significantly improved light absorption and decreased recombination rate of photo-generated carriers owing to the introduction of Au NPs. The optimal 2AH (loaded with 2 wt% Au) sample demonstrated the best photocatalytic performance for ammonia production with a yield of 70.3 μmol g− 1 h− 1, which outperformed that of HCN. This can be attributed to the SPR effect of Au NPs and alkali metal of HCN structure. These findings provide a theoretical basis for studying noble metal-enhanced photocatalytic activity for nitrogen fixation and offer new insights into advances in efficient photocatalysts.
Si-based anodes are promising alternatives to graphite owing to their high capacities. However, their practical application is hindered by severe volume expansion during cycling. Herein, we propose employing a carbon support to address this challenge and utilize Si-based anode materials for lithium-ion batteries (LIBs). Specifically, carbon supports with various pore structures were prepared through KOH and NaOH activation of the pitch. In addition, Si was deposited into the carbon support pores via SiH4 chemical vapor deposition (CVD), and to enhance the conductivity and mechanical stability, a carbon coating was applied via CH4 CVD. The electrochemical performance of the C/Si/C composites was assessed, providing insights into their capacity retention rates, cycling stability, rate capability, and lithium-ion diffusion coefficients. Notably, the macrostructure of the carbon support differed significantly depending on the activation agent used. More importantly, the macrostructure of the carbon support significantly affected the Si deposition behavior and enhanced the stability by mitigating the volume expansion of the Si particles. This study elucidated the crucial role of the macrostructure of carbon supports in optimizing Si-based anode materials for LIBs, providing valuable guidance for the design and development of high-performance energy-storage systems.
We investigated the effects of supercritical-CO2 treatment on the pore structure and consequent H2 adsorption behavior of single-walled carbon nanohorns (SWCNHs) and SWCNH aggregates. High-resolution transmission electron microscopy and adsorption characterization techniques were employed to elucidate the alterations in the SWCNH morphology and aggregate pore characteristics induced by supercritical-CO2 treatment. Our results confirm that supercritical-CO2 treatment reduces the interstitial pore surface area and volume of SWCNH aggregates, notably affecting the adsorption of N2 (77 K), CO2 (273 K), and H2 (77 K) gasses. The interstitial porosity strongly depends on the supercritical-CO2 pressure. Supercritical-CO2 treatment softens the individual SWCNHs and opens the core of SWCNH aggregates, producing a partially orientated structure with interstitial ultramicropores. These nanopores are formed by the diffusion and intercalation of CO2 molecules during treatment. An increase in the amount of H2 adsorbed per interstitial micropore of the supercritically modified SWCNHs was observed. Moreover, the increase in the number and volume of ultramicropores enable the selective adsorption of H2 and CO2 molecules. This study reveals that supercritical-CO2 treatment can modulate the pore structure of SWCNH aggregates and provides an effective strategy for tailoring the H2 adsorption properties of nanomaterials.
Gold nanoparticles (Au NPs) decorated carbon nanofibers (CNFs) have been prepared by an electrospinning approach and then carbonized. The prepared Au-CNFs were employed to modifying a screen printed electrode (SPE) for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Au NPs are uniformly dispersed on carbon nanofibers were confirmed by the structure and morphological studies. The modified electrodes were tested in cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CA) to characterize their electrochemical responses. Compared to bare SPE, the Au-CNFs/SPE had a better sensing response to AA, DA, and UA. The electrochemical oxidation signal of AA, DA and UA are well separated into three distinct peaks with peak potential separation of 280 mV, 159 mV and 439 mV between AA-DA, DA-UA and AA-UA respectively in CV studies and the corresponding peak potential separation in DPV studies are 290 mV, 166 mV and 456 mV. The Au-CNFs/SPE has a wide linear response of AA, DA and UA in DPV analysis over the range of 5–40 μM ( R2 = 0.9984), 2–16 μM ( R2 = 0.9962) and 2–16 μM ( R2 = 0.9983) with corresponding detection limits of 0.9 μM, 0.4 μM and 0.3 μM at S/N = 3, respectively. The developed modified SPE based sensor exhibits excellent reproducibility, stability, and repeatability. The excellent sensing response of Au-CNFs could reveal to a promising approach in electrochemical sensor.
Nitrogen-doped carbon nanomaterials (N-CNMs) were prepared using Ni(NO3)2 as a catalyst in the laminar diffusion flame. Doping the structure of carbon nanomaterials (CNMs) with nitrogen can significantly change the characteristics of CNMs. The purpose of this research is to study the effect of adding ammonia ( NH3) on the evolution of CNMs structure in the laminar flame of ethylene. Raman analysis shows that the intensity ratio ( ID/IG) of the D-band and G-band of N-CNMs increases and then decreases after the addition of NH3. The intensity ratio is a maximum of 0.99, which has a good degree of disorder and defect density. The binding distribution of nitrogen was analyzed by X-ray photoelectron spectroscopy (XPS), and a correlation was found between the amount of nitrogen and the morphology of N-CNMs. Nitrogen atoms predominantly present in the forms of pyrrolic-N, pyridinic-N, graphitized-N and oxidized-N, with a doping ratio of nitrogen atoms reaching up to 2.44 at.%. This study found that smaller nickel (Ni) nanoparticles were the main catalysts for carbon nanotubes (CNTs), and their synthesis followed the ‘hollow growth mechanism’ and carbon nanofibers (CNFs) were synthesized from larger Ni nanoparticles according to the ‘solid growth mechanism’. Furthermore, a growth mechanism for the synthesis of bamboolike CNTs using a specific particle size of the Ni catalyst is proposed. It is noteworthy that the synthesis and modulation of high-performance N-CNMs by flame method represents a simple and efficient approach.
Graphene-based solar cells and supercapacitors integrated into photosupercapacitors represent a pioneering advancement. These devices leverage the exceptional properties of graphene, such as high conductivity and large surface area, to enhance both solar energy conversion and energy storage. The integration of these technologies into photosupercapacitors creates a multifunctional device capable of harnessing solar energy and storing it efficiently. This innovative approach holds promise for sustainable and versatile energy solutions, marking a significant step towards developing efficient and compact energy storage systems. This integration addresses the intermittent nature of solar power generation by providing a continuous and reliable power supply through energy storage. Supercapacitors are one such energy device with a high-power density and excellent specific capacitance which is integrated will a dye-sensitized solar cell (DSSC) comprising a single system of photosupercapacitor. A novel electrode material of NiO/CuO/Co3O4/rGO was synthesized which serves as the Pt-free counter electrode of DSSC and working or storage electrode of supercapacitor later was used as the intermediate electrode and storage electrode of a photosupercapacitor. The integrated photosupercapacitor device had a photovoltage of 0.81 V with arealspecific capacitance, energy and power density of 190.12 mF cm− 2, 17.325 μW h cm− 2 and 0.162 mW cm− 2, respectively. The device self-discharged in 385 s with an overall conversion efficiency of 2.17%, resulting in a self-charged energy device.
A simple and effective method was developed to prepare fluorescent carbon quantum dots (CQDs) for the detection of Fe3+ and Cu2+ in aqueous solution. The water-soluble CQDs with the diameter around 2–5 nm were synthesized using anthracite coal as the precursor. In addition, the as-prepared CQDs exhibits sensitive detection properties for Fe3+ and Cu2+ metal cations with a detection limit of 18.4 nM and 15.6 nM, respectively, indicating that the coal-derived CQDs sensor is superior for heavy metal recognition and environmental monitoring.
Diamond/SiC composites were prepared by vacuum silica vapor-phase infiltration of in situ silicon–carbon reaction, and the thermophysical properties of the composites were modulated by controlling diamond graphitizing. The effects of diamond surface state and vacuum silicon infiltration temperature on diamond graphitization were investigated, and the micromorphology, phase composition, and properties of the composites were observed and characterized. The results show that diamond pretreatment can reduce the probability of graphitizing; when the penetration temperature is greater than 1600 °C, the diamond undergoes a graphitizing phase transition and the micro-morphology presents a lamellar shape. The thermal conductivity, density, and flexural strength of the composites increased and then decreased with the increase of penetration temperature in the experimentally designed range of penetration temperature. The variation of thermal expansion coefficients of composites prepared with different penetration temperatures ranged from 0.8 to 3.0 ppm/K when the temperature was between 50 and 400 °C.
Carbon fibers (CFs) with different tensile moduli of 280–384 GPa were applied to investigate the relationship between crystalline structure and compressive failure. The carbon chemical structure and crystalline structure were studied by Raman, highresolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The correlation between compressive strength and crystalline structure was investigated. The results showed that the transition point between medium and high tensile modulus was around 310 GPa, and within the range of medium modulus, the compressive strength of CFs improved with the increase of tensile modulus, and the compressive strength also improved with the increase of crystal thickness Lc, crystal width La, and crystal plane orientation; In the high modulus range, the correlation law was opposite, which was mainly influenced by the grain boundary structure. CFs with tensile modulus lower than 310 GPa exhibited bucking and kinking fracture under compressive loading, while shear fracture was observed for CFs with tensile modulus higher than 310 GPa.
The cost of treating water purification plant water treatment residuals is high, with a low recovery rate and unstable effluent water quality, particularly in plants using lake and reservoir water sources in severe cold regions. Maximizing water resource utilization requires integrating water treatment residuals concentration and treatment effectively. Here, ceramic membrane technology was employed to separate supernatant and substrate after pretreatment. Optimal settling was achieved using 75 μm magnetic powder at 200 and 4 mg/L of nonionic polyacrylamide co-injection. Approximately 65% of the separated supernatant was processed by 0.1–0.2 μm Al2O3 ceramic membranes, yielding a membrane flux of 50 L/m2h and a water recovery rate of 99.8%. This resulted in removal rates of 99.3% for turbidity, 98.2% for color, and 87.7% for color and permanganate index (chemical oxygen demand, COD). Furthermore, 35% of the separated substrate underwent treatment with 0.1–0.2 μm mixed ceramic membranes of Al2O3 and SiC, achieving a membrane flux of 40 L/m2h and a water recovery rate of 73.8%. The removal rates for turbidity, color, and COD were 99.9%, 99.9%, and 82%, respectively. Overall, this process enables comprehensive concentration and treatment integration, achieving a water recovery rate of 90.7% with safe and stable effluent water quality.
Despite the widespread use of polyaniline as a pseudocapacitor material, the cycling stability and rate capability of polyaniline- based electrodes are of concern because of the structural instability caused by repeated volumetric swelling and shrinking during the charge/discharge process. Herein, nanofiber-structured polyaniline was synthesized onto activated carbon textiles to ensure the long-term stability and high-rate capability of pseudocapacitors. The nanoporous structures of polyaniline nanofibers and activated textile substrate enhanced the ion and electron transfer during charge/discharge cycles. The resulting pseudocapacitor electrodes showed high gravimetric, areal, and volumetric capacitance of 769 F g− 1, 2638 mF cm− 2, and 845.9 F cm− 3, respectively; fast charge/discharge capability of 92.6% capacitance retention at 55 mA cm− 2; and good longterm stability of 97.6% capacitance retention over 2000 cycles. Moreover, a symmetric supercapacitor based on polyaniline nanofibers exhibited a high energy of 21.45 Wh cm− 3 at a power density of 341.2 mW cm− 3 in an aqueous electrolyte.
Iron selenides with high capacity and excellent chemical properties have been considered as outstanding anodes for alkali metal-ion batteries. However, its further development is hindered by sluggish kinetics and fading capacity caused by volume expansion. Herein, a series of FeSe2 nanoparticles (NPs)-encapsulated carbon composites were successfully synthesized by tailoring the amount of Fe species through facile plasma engineering and followed by a simple selenization transformation process. Such a stable structure can effectively mitigate volume changes and accelerate kinetics, leading to excellent electrochemical performance. The optimized electrode ( FeSe2@C2) exhibits outstanding reversible capacity of 853.1 mAh g− 1 after 150 cycles and exceptional rate capacity of 444.9 mAh g− 1 at 5.0 A g− 1 for Li+ storage. In Na+ batteries, it possesses a relatively high capacity of 433.7 mAh g− 1 at 0.1 A g− 1 as well as good cycle stability. The plasma-engineered FeSe2@ C2 composite, which profits from synergistic effect of small FeSe2 NPs and carbon framework with large specific surface area, exhibits remarkable ions/electrons transportation abilities during various kinetic analyses and unveils the energy storage mechanism dominated by surface-mediated capacitive behavior. This novel cost-efficient synthesis strategy might offer valuable guidance for developing transition metal-based composites towards energy storage materials.
Activated carbon is generally recognized as an applicable material for gas or liquid adsorption and electrochemical devices, such as electric double-layer capacitors (EDLCs). Owing to the continuous increase in its price, research aimed at discovering alternative materials and improving its fabrication yield is important. Herein, organic pigments were ingeniously employed to enhance the fabrication of high-surface-area activated carbon with remarkable efficiency. Moreover, the focus was centered on the assessment of activated carbon derived from 2,9-dimethylquinacridone, also known as CI Pigment Red 122 for its capacity to adsorb tetracycline (TC) and its applicability as an electrode material for EDLCs. Activating these organic pigments with varying potassium hydroxide ratios allowed the fabrication of activated carbon with a higher yield than that for conventional activated carbon. Furthermore, it was confirmed that activated carbon with a very high specific surface area can be efficiently fabricated, demonstrating a remarkable potential in various application fields. Notably, this activated carbon exhibited an impressive maximum specific surface area and a total pore volume of 3,935 m2/ g and 2.324 cm3/ g, respectively, showcasing its substantial surface area and distinctive porous characteristics. Additionally, the Langmuir and Freundlich isotherm models were employed to examine the TC adsorption on the activated carbon, with the Langmuir model demonstrating superior suitability than the Freundlich model. Furthermore, the electrochemical performance of an activated carbon-based electrode for EDLCs was rigorously evaluated through cyclic voltammetry. The specific capacitance exhibited a considerable increase in proportion to the expanding specific surface area of the activated carbon.
In this study, simulated X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were utilized to differentiate the carbon nanoribbons (CNRs) and carbon nanobelts (CNBs) with different edges. CNRs, characterized by linear, extended π-conjugated systems, and CNBs, featuring closed-loop, cyclic structures, exhibit distinct bandgaps influenced by edge configuration and molecular structure. CNBs generally possess smaller bandgaps than GNRs due to enhanced π-conjugation and electron delocalization in their curved structures. Specifically, the bandgaps of zigzag-edged GNRs and CNBs are smaller than those of their armchair-edged counterparts. These differences in electronic states cause shifts in the position of the C1s XPS peaks. ANR and ANB exhibit lower binding energies (BEs) compared to ZNR and ZNB. The peak position differences, which are 1.3 eV between ZNR and ANR and 0.5 eV between ZNB and ANB, highlight how edge configuration can differentiate structures within the same ribbon or belt type. While ZNR and ZNB have nearly identical peak positions, rendering them hard to distinguish, the 0.9 eV difference between ANR and ANB allows for clear differentiation. In ZNR and ZNB, strong bands from C–H bending and C–C stretching were observed, with slight differences in band positions allowing for structural differentiation. In ANR and ANB, the Kekulé vibration band was most intense, appearing at lower wavenumbers in ANB. Additionally, ANB showed unique C–C stretching bands at 1483 and 1581 cm− 1, which were barely observed in ANR. This study lays the groundwork for future spectroscopic analysis of GNRs and CNBs.