간행물

Carbon Letters KCI 등재 Carbon letters

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol.31 No.5 (2021년 10월) 24

1.
2021.10 구독 인증기관 무료, 개인회원 유료
This work reveals a modified method for the preparation of activated carbon (P-ACA) using low-cost materials (mix natural asphalt: polypropylene waste). The P-ACA was prepared at 600 °C by assisting KOH and HF. The morphological variations and chemical species of the P-ACA were characterized using SEM–EDX and FTIR. The active surface area, density and ash content of the P-ACA were also investigated. Adsorption properties of P-ACA were used for the thermodynamic and kinetic study of 4-((2-hydroxy naphthalenyl) diazenyl) antipyrine (HNDA), which was prepared as a novel azo dye in this work. The optimal conditions (initial concentration, adsorbent dose, contact time and temperature) of the adsorption process were determined. Adsorption isotherms (Freundlich and Langmuir) were applied to the experimental data. These isothermal constants were used to describe the nature of the adsorption system, and the type of interaction between the dye and the P-ACA surface. The results have indicated that the mixture (Natural asphalt-polypropylene waste) is efficient for the synthesis of P-ACA. The synthesized P-ACA demonstrates the presence of pores on the surface with various diameter ranges (from 1.4 to 4.5 μm). Furthermore, P-ACA exhibits an active surface area of 1230 m2 g−1, and shows a high adsorption capacity for HNDA.
4,500원
2.
2021.10 구독 인증기관 무료, 개인회원 유료
In this study, Fe3O4/ MgO/Activated carbon composite was used to remove arsenic ion (As (III)) from aqueous media. To this end, Frangula Alnus was used to prepare activated carbon (AC) by calcination in the furnace at 700 °C for 4 h and was then used to synthesize the MgO/Fe3O4/AC composite. To study the surface properties of the composite, various analyses such as SEM, EDX/Mapping, FTIR, DLS, BET and VSM were applied. According to the BET analysis, the specific surface area and average pore size of the Fe3O4/ MgO/AC composite were obtained as 190.92 m2/g and 7.57 nm, respectively, which showed that the aforementioned nanocomposite had a mesoporos structure with an excellent specific surface area. Also, VSM analysis indicated that the composite had a superparamagnetic property and could be easily separated from the solution by a magnet. Moreover, the results of the As (III) sorption indicated that the highest uptake efficiency was obtained 96.65% at pH = 7, adsorbent dosage = 0.13 g/L, t = 35 min, T = 45 °C and Co = 6 mg/L. In addition, the pseudo-second-order model could better describe the kinetic behavior of the sorption process. Furthermore, Langmuir model was the best model to describe the equilibroium behavior of the As(III) ion sorption. Besides, according to the the thermodynamic study, enthalpy change and entropy change were obtained 58.11 kJ/mol and 224.49 J/mol.K, respectively, indicating that the sorption process was spontaneous and endothermic. According to the results, the Fe3O4/ MgO/AC composite was a good adsorbent with the extraordinary properties, which can be used on an industrial scale.
4,300원
3.
2021.10 구독 인증기관 무료, 개인회원 유료
This work reports utilization of apple leaves as a source of activated carbon. Activated carbon from apple leaves is prepared by two different methods, thermal activation where AC1 is obtained and chemical activation using H3PO4 and ZnCl2 where AC2 and AC3 are obtained, respectively. XRD analysis revealed that all types of prepared ACs have a semi-crystalline nature with a mean crystallite size of 13, 21.02, and 39.47 nm for AC1, AC2, and AC3, respectively. To identify the most suitable desorption temperature, the exothermic behavior was discovered for the three types of ACs by DSC. The exothermic onset temperatures are 340 °C, 200 °C, 400 °C, or AC1, AC2, and AC3, respectively. The point of zero charge for the three types of ACs is 8.6, 7.3, and 2.5 for AC1, AC2, and AC3, respectively. The BET surface area analysis data demonstrated that mesoporous structure was developed in AC1 and AC2, while a microporous structure was developed in AC3. Quantum chemical calculations for ACs is carried out using Density Functional Theory (DFT). Application of the prepared ACs in adsorption of basic dye C.I. base blue 47 is studied. The maximum removal efficiency was 65.1%, 96% and 99% for AC1, AC2, and AC3, respectively under the influence of different operating aspects. Adsorption data are modeled by Langmuir, Freundlich, and Temkin isotherms. The data revealed that adsorption of basic dye C.I. base blue 47 on AC1 follows Langmuir isotherm and adsorption on AC2 and AC3 follows Freundlich isotherm.
4,900원
4.
2021.10 구독 인증기관 무료, 개인회원 유료
Doped porous carbon materials have attracted great interest owing to their excellent electrochemical performance toward energy storage applications. In this report, we described the synthesis of nitrogen-doped porous carbon (N-PC) via carbonization of a triazine-based covalent organic framework (COF) synthesized by Friedel–Crafts reaction. The as-synthesized COF and N-PC were confirmed by X-ray diffraction. The N-PC exhibited many merits including high surface area (711 m2 g−1), porosity, uniform pore size, and surface wettability due to the heteroatom-containing lone pair of electron. The N-PC showed a high specific capacitance of 112 F g−1 at a current density of 1.0 A g−1 and excellent cyclic stability with 10.6% capacitance loss after 5000 cycles at a current density of 2.0 A g−1. These results revealed that the COF materials are desirable for future research on energy storage devices.
4,000원
5.
2021.10 구독 인증기관 무료, 개인회원 유료
Graphene-based materials show excellent properties in various applications because of their electrical properties, large surface areas, and high tolerance for chemical modification. The use of wet-process is a promising way for their mass production. Heteroatom doping is one of the common methods to improve their electrical, physical, and electrochemical properties. In this work, we develop a new route for the production B-doped graphene-based materials using low-temperature wet-process, which is the reaction between graphene oxide suspensions and a BH3 adduct in tetrahydrofuran under reflux. Elemental mapping images show well-dispersed B atoms along the materials. Various spectroscopic characterizations confirm the reduction of the graphene oxide and incorporation of B atoms into the carbon network as high as ~ 2 at%. The materials showed electrocatalytic activity for oxygen reduction reactions.
4,000원
6.
2021.10 구독 인증기관 무료, 개인회원 유료
Double-layer graphene nanoribbons promise potential application in nanoelectromechanical systems and optoelectronic devices, and knowledge about mechanical stability is a crucial parameter to flourish the application of these materials at the next generation of nanodevices. In this paper, molecular mechanics is utilized to investigate nonlinear buckling behavior, critical buckling stress, and lateral deflection of double-layered graphene nanoribbons under various configurations of stacking mode and chirality. The implicit arc-length iterative method (modified Riks method) with Ramm’s algorithm is utilized to analyze the nonlinear structural stability problem. The covalent bonds are modeled using three-dimensional beam elements in which elastic moduli are calculated based on molecular structural mechanics technique, and the interlayer van der Waals (vdW) interactions are modeled with nonlinear truss elements. An analytical expression for Young’s modulus of nonlinear truss elements is derived based on the Lennard–Jones potential function and implemented in numerical simulation with a UMAT subroutine based on FORTRAN code to capture the nonlinearity of the vdW interactions during the buckling analysis. The results indicate that the highest critical buckling stress and the minimum lateral deflection occur for armchair and zigzag chirality, both with AB stacking mode, respectively. Moreover, the critical buckling stress is found to be directly dependent on the mode shape number regardless of in-phase or anti-phase deflection direction of layers. Lateral deflection exhibits a similar trend with mode shape in anti-phase mode; however, it is decreasing by increasing mode shape number in in-phase mode.
4,900원
7.
2021.10 구독 인증기관 무료, 개인회원 유료
This study examined the effects of micro- (crystallinity) and macro (orientation)-crystalline properties of graphite on the initial efficiency, discharge capacity, and rate performance of anodic materials. Needle coke and regular coke were selected as raw materials and pulverized to 2–25 μm to determine the effects of crystalline properties on particle shape after pulverization. Needle coke with outstanding crystallinity had high initial efficiency, and smaller particles with larger specific surface areas saw increased irreversible capacity due to the formation of SEI layers. Because of cavities existing between crystals, the poorer the crystalline properties were, the greater the capacity of the lithium ions increased. As such, regular coke had a 30 mAh/g higher discharge capacity than that of needle coke. Rate performance was more affected by particle size than by crystalline structure, and was the highest at a particle distribution of 10–15 μm.
4,000원
8.
2021.10 구독 인증기관 무료, 개인회원 유료
In the present study, pyrolyzed fuel oil (PFO)-based pitch without impurities was used to prepare coke under pressure, and the preparation yield and the powder resistance depending on the graphitization were investigated. The preparation yield of green coke by pressurized coking at 500 °C was about 26–27% higher than that at normal pressure. However, the coke yield after the thermal treatment of green coke at 900 °C was lower by 10.6–14.8% at the pressurization conditions than under normal pressure. This may be because the substances that are not vaporized under the pressurized conditions remain in the reactants and then are discharged later. The coke yield after the thermal treatment at 900 °C was higher by 14.9–28.3% under the pressurized conditions than under the normal pressure, indicating that the low-boiling point materials of the pitch participated more in coke polymerization under the pressurized conditions. The density of the coke prepared under the pressurized conditions was lower than that of the coke prepared under normal pressure, because the low-boiling point materials of the pitch participated in the reaction. However, after graphitization, the density values became similar (2.27–2.26 g/cm3). The volume resistivity of the graphitized samples was in a range of 0.499 × 10–2–0.384 × 10–2 Ω cm, indicating that the coke samples have similar electrical properties. The results of the present study show that, in comparison with the conventional normal-pressure process, the pressurized coking process can improve the yield through the participation of low-boiling point materials in the polymerization reaction, while maintaining the properties of the prepared coke and graphite, such as the conductivity and density.
4,000원
9.
2021.10 구독 인증기관 무료, 개인회원 유료
DLC has been attractive as semiconductor materials for solar cell due to its biological friendliness, flexible microstructures, and especially its tunable band gap. In order to fabricate high-efficiency multiband gap solar cell, it is important to control the sp3/ sp2 bonds ratio of DLC film corresponding to optical band gap (Eg). There are many references reporting the relations among the fabrication conditions, Eg, sp3/ sp2, and ID/ IG. However, a more comprehensive database is needed for controllable fabrication. Especially, the quantitative relationship of sp3/ sp2 ratio to Eg of DLC film by PECVD is unclear. In this paper, 36 sets of DLC films were fabricated by RF-PECVD. Characterization methods of XPS, Raman spectroscopy, and IR absorption have been used to determine the sp3/ sp2 ratio of DLC films. UV/visible light absorption method has applied to evaluate Eg. The Eg obtained is in the range 1.45–3.0 eV. Our results agree well with the references. The XPS spectra gives a linear relationship as Eg = − 0.161 (± 0.136) + 26.095 (± 1.704) · {sp3 (XPS)/sp2}, the Raman spectra shows a linear function that Eg = 1.327 (± 0.046) + 0.428 (± 0.036) · (ID/IG), as well as the FTIR analysis demonstrates that Eg = − 0.492 (± 0.093) + 0.464 (± 0.044) · {sp3 (FTIR)/sp2}.
4,200원
10.
2021.10 구독 인증기관 무료, 개인회원 유료
Preparation of activated carbons from wood waste including northern hardwood pins-fines and wood dust was conducted and then compared through the following methods: physical pyrolysis and CO2 activation, vacuum pyrolysis and CO2 activation, CO2 gasification, and vacuum CO2 gasification processes. Experimental results show that chars and activated carbons with high surface area and pore volume are produced from wood waste through a vacuum CO2 pyrolysis/gasification process. The effects of operation variables of vacuum pyrolysis/gasification on the properties of chars and activated carbons were investigated to identify and optimize the temperature, heating time, and heating rate. The optimized vacuum CO2 gasification conditions were found to be a temperature of 800 °C, a heating rate of 20 °C/min, and a holding time of 2 h respectively. The prepared wood-chars and activated carbons were characterized by nitrogen physisorption, scanning electron microscopy (SEM). Fourier transform infrared (FTIR) spectra determined any changes in the surface functional groups produced during different preparation stages.
4,900원
11.
2021.10 구독 인증기관 무료, 개인회원 유료
Biomass of agricultural waste is getting increasing attention all over the world as it is a kind of renewable, abundantly available, low cost, and environmentally friendly resource. Preparation of activated carbon from agricultural waste via microwave-assisted chemical agent activation. The porosity, surface area, and functional and surface chemistry were featured by means of low-temperature nitrogen adsorption, Scanning Electron Microscopy, (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The best conditions resulted in activated carbon with adsorption capacity of 517.5 mg/g and carbon yield of 80.99%. The activated carbons from carbonized tobacco stem with K2CO3 activation by microwave radiation is highest of surface area, and total pore volume corresponded to 2557 m2/g, and 1.647 cm3/g, respectively, with a high contribution of mesopores, microwave power of 700 W, and irradiation time of 30 min. The results of the review showed that chemical activation could develop both microporosity and mesoporosity. The findings support the potential to prepare high surface area and micropore-activated carbon from agricultural waste by microwave-induced chemical activation.
4,800원
12.
2021.10 구독 인증기관 무료, 개인회원 유료
The effect of heat treatment and vacuum conditions on the textural properties and electrochemical performance of commercially available activated carbons (ACs) was investigated. The AC after post-heat treatment was characterized by nitrogen adsorption–desorption, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy measurements. The ACs treated under vacuum conditions exhibit a higher specific surface area and micropore surface area than those treated under nitrogen atmospheric pressure without significantly affecting the graphite structure of the AC. Under 800 °C temperature and vacuum conditions (AC-V800), the AC with the highest Brunauer– Emmett–Teller surface area of 1951.9 m2 g−1 (16.4% improvement relative to that of the original AC (1677.2 m2 g−1)) was obtained. This is attributed to the removal of oxygen-containing functional groups and volatile matters in the carbon by thermal treatment under vacuum conditions. Consequently, the electric double-layer capacitor using ACs treated under vacuum conditions (1 kPa) at 800 °C (AC-V800) shows considerably improved electrochemical performance in terms of higher specific capacitance and better cycling stability at a high working voltage (3.1 V), compared to the nitrogen-treated and commercial ACs.
4,300원
13.
2021.10 구독 인증기관 무료, 개인회원 유료
The high level of lithium storage in synthetic porous carbons has necessitated the development of accurate models for estimating the specific capacity of carbon-based lithium-ion battery (LIB) anodes. To date, various models have been developed to estimate the storage capacity of lithium in carbonaceous materials. However, these models are complex and do not take into account the effect of porosity in their estimations. In this paper, a novel model is proposed to predict the specific capacity of porous carbon LIB anodes. For this purpose, a new factor is introduced, which is called normalized surface area. Considering this factor, the contribution of surface lithium storage can be added to the lithium stored in the bulk to have a better prediction. The novel model proposed in this study is able to estimate the lithium storage capacity of LIB anodes based on the porosity of porous carbons for the first time. Benefiting porosity value (specific surface area) makes the predictions quick, facile, and sensible for the scientists and experts designing LIBs using porous carbon anodes. The predicted capacities were compared with that of the literature reported by experimental works. The remarkable consistency of the measured and predicted capacities of the LIB anodes also confirms the validity of the approach and its reliability for further predictions.
4,000원
14.
2021.10 구독 인증기관 무료, 개인회원 유료
Pyrolysis fuel oil (PFO) is used for the manufacturing of high-purity pitch for carbon precursor due to its high carbon content, high aromaticity, and low heterogeneous element and impurity content. Pitch is commonly classified with its softening point, which is most considerable physical property affecting to various characteristics of the carbon materials based on pitch, such as electrical and thermal conductivity, mechanical strength, and pore property. Hence, the softening point should be controlled to apply pitch to produce various carbon materials for different applications. Previous studies introduce reforming process under high pressure and two step heat treatment for the synthesis of pitch with high softening point from PFO. These methods lead to a high process cost; therefore, it is necessary to develop a process to synthesize the pitch with high softening point by using energy effective process at a low temperature. In this study, waste polyethylene terephthalate (PET) was added to control the softening point of PFO-based pitch. The pitch synthesized by the heat treatment with the addition of PET showed the softening point higher than that of the pitch synthesized with only PFO. The softening point of PFObased pitch synthesized at 420 °C was 138.3 °C, while that of the pitch synthesized by adding PET under the same process conditions was 342.8 °C. It is proposed that the effect of the PET addition on the increase in the softening point was due to the radicals generated from thermal degradation of PET. The radicals from PET react with the PFO molecules to promote the polymerization and finally increase the molecular weight and softening point of the pitch. In addition, activated carbon was prepared by using the pitch synthesized by adding PET, and the results showed that the specific surface area of the activated carbon increased by the addition of PET. It is expected that the pitch synthesis method with PET addition significantly contributes to the manufacture of pitch and activated carbon.
4,000원
15.
2021.10 구독 인증기관 무료, 개인회원 유료
Novel eco-friendly adsorbents were prepared through pyrolysis and acid activation of raw almond leaf (RAL) to form almond leaf biochar (ALB) and chemically activated almond leaf biochar (CAL), respectively. The prepared adsorbents were characterized using TGA, FTIR, SEM–EDX, BET and XRD techniques and their physicochemical properties investigated. RAL, ALB and CAL were utilized for adsorption of BPB dye from aqueous solution using batch technique under optimum conditions. The optimum dye adsorbed by RAL, ALB and CAL were 92.83, 93.21 and 94.89%, respectively at pH 3, dye initial conc. (100 mg/L), adsorbent dose (0.04 g/25 mL), 60 min contact time and 301 K adsorption temperature. Although, Langmuir maximum monolayer adsorption capacities were found to be 365.36, 535.62 and 730.46 mg/g for RAL, ALB and CAL, respectively, but isotherm conformed to Freundlich model. Kinetic study confirmed suitability of pseudo-second-order model with rate constant 9.33 × 10–4, 9.91 × 10–4 and 12.60 × 10−4 g mg−1 min−1 for RAL, ALB and CAL, respectively. Negative values of thermodynamic parameters (ΔG and ΔH) established sequestration process to be spontaneous and exothermic. RAL, ALB and CAL were discovered to be highly efficient adsorbents that could be used in place of expensive commercial adsorbents.
4,600원
16.
2021.10 구독 인증기관 무료, 개인회원 유료
Multi-walled carbon nanotubes (MWCNTs) grown by chemical vapor deposition retain the residual catalyst particles from which the growth occurred, which are considered a detriment to MWCNTs’ performance, especially electrical conductivity. The first direct measurements have been made of the electrical transport through the catalyst cap into the MWCNT using nanoscale 2-point-probe to determine the effects of the catalyst particle’s size and the diameter ratio with its associated MWCNT on the electrical transport through the catalyst cap as compared to the inherent conductivity of the MWCNT. The MWCNT diameter is independent of the catalyst size, but the ratio of the catalyst cap diameter to MWCNT diameter (DC/DNT) determines the conduction mechanism. Where DC/DNT is greater than 1 the resulting I–V curve is near ohmic, and the conduction through the catalyst ( RC+NT) approaches that of the MWCNT (RNT); however, when the DC/DNT < 1 the I–V curves shift to rectifying and RC+NT > > RNT. The experimental results are discussed in relation to current crowding at the interface between catalyst and nanotube due to an increased electric field.
4,000원
17.
2021.10 구독 인증기관 무료, 개인회원 유료
The paper deals with a comparative study of equilibrium and kinetics of phenol adsorption from aqueous solutions by means of commercial activated carbons and semi-cokes, differing in the nature of feedstock, production technology and structural characteristics. The main adsorption parameters are calculated with the usage of Langmuir and Dubinin–Radushkevich equations. The change in the characteristics of the structure and state of the surface of semi-coke P2 as a result of modification is estimated. It was found that phenol adsorption kinetics is described by a pseudo-second-order model. The adsorption rate constants and the coefficient of external diffusion mass transfer are calculated. It is proved that phenol extraction from aqueous solutions presents a mixed-diffusion nature, and the process rate is limited by external mass transfer for 13 min for SKD-515 and 22 min for ABG. To increase the adsorption capacity, the oxidative modification of the semi-coke P2 was carried out. Considering the economic and technological aspects, ABG semi-coke is recognized as a promising sorbent for phenol extraction from aqueous media.
4,000원
18.
2021.10 구독 인증기관 무료, 개인회원 유료
Activated non-graphitizable hard carbon using orange peel with mesoporous structure has been prepared by pyrolyzation at 700, 800, 900 °C using chemical activation method. The activated orange peel-derived hard carbon has been characterized for its mesoporous and disordered structure. TG-DSC gives the information for the changes about sample composition and thermal stability of the materials. Increasing the carbonization temperature for orange peel precursor using NaOH as activating agent, elevates the pore diameter, which thereby facilitating the insertion of Na+. Raman and X-ray diffraction confirms the presence of disordered carbon. The surface morphology of the material was analyzed by scanning eletron microsope and nitrogen ( N2) adsorption and desorption analysis give the morphology, mesopore size (3.374, 3.39 and 4 nm) and surace area (60.164, 58.99 and 54.327 m2/g) of the orange peel-derived hard carbon. Hence, this work strongly evidences that the biomass-derived hard carbon with good porosity and paves way of superior electrochemical performance for emerging sodium ion batteries.
4,000원
19.
2021.10 구독 인증기관 무료, 개인회원 유료
In this report, we incorporate activated carbon (AC) onto aluminum substrate via doctor blade method to produce an all-solid-state supercapacitor. The electrochemical properties of the all-solid-state supercapacitor were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Galvanostatic charge/discharge tests also were carried out to exhibit stability of the AC-based supercapacitor. The impedance and charge/discharge curves of the all-solid-state supercapacitor showed good capacitive behavior after functionalized AC. The highest specific capacitance obtained for the AC-based supercapacitor was 106 F g−1. About 160% of specific capacitance increased after functionalization of the AC, which indicated that modification of the AC by nitric acid was able to introduce functional groups on the AC and improve its electrochemical performances.
4,000원
20.
2021.10 구독 인증기관 무료, 개인회원 유료
The phenomena of single-layer graphene resonant photoluminescence and Raman radiation are discussed taking into account the photo-generated electron–hole Coulomb interaction. On the base of general principles of a many-particle interactions and the interband resonance optical transitions a photon radiation new mechanism (Coulomb mechanism) is proposed. Through Stokes 2D’-mode particular case analysis has shown that the graphene photoluminescence and the resonant Raman radiation are characterized by the same frequency shifts. Probabilities of resonance photo-radiation processes have been presented where the electron–hole Coulomb attraction has been taken into account. The probabilities are the same fourth-order small values. The weak photo-radiation Coulomb mechanism has a common character. It is applicable to both zero and nonzero band gap crystals.
4,000원
1 2