Activated carbon fiber could be prepared at 973 K by catalytic activation using potassium hydroxide. Phenol resin fiber (Kynol) was impregnated with potassium hydroxide ethanol solution, carbonized and activated at 973 K, resulting in activated carbon fibers with different porosities. The potassium hydroxide accelerated the activation of the fiber catalytically to form narrow micropore preferentially in carbon dioxide atmosphere. The narrow micropore volume of 0.3~0.4 cc/g, total pore volume of 0.3~0.8 cc/g, mean pore width of 0.5~0.7 nm was obtained in the range of 20~50% burnoff.
Silicon carbide whiskers (SiCw) having the diameter in the range of 20-80 nm were synthesised from coconut fibres through sol-gel process. The coconut fibres were impregnated with tetraethoxysilane and methyltriethoxysilane derived sol and pyrolyzed at 1400℃ in argon. X-ray of the pyrolyzed samples showed the formation of β-SiC.
A carbonaceous sorbent was prepared from rice husk via sulphuric acid treatment. After preparation and washing, the wet carbon with moisture content 85% was used in its wet status in this study due to its higher reactivity towards Cr(VI) than the dry carbon. The interaction of Cr(VI) and the carbon was studied and two processes were investigated in terms of kinetics and equilibrium namely Cr(VI) removal and chromium sorption. Cr(VI) removal and chromium sorption were studied at various initial pH (1.6-7), for initial Cr(VI) concentration (100 mg/l). At equilibrium, maximum Cr(VI) removal occurred at low initial pH (1.6-2) where, Cr(III) was the only available chromium species in solution. Cr(VI) removal, at such low pH, was related to the reduction to Cr(III). Maximum chromium sorption (60.5 mg/g) occurred at initial pH 2.8 and a rise in the final pH was recorded for all initial pH studied. For the kinetic experiments, approximate equilibrium was reached in 60-100 hr. Cr(VI) removal data, at initial pH 1.6-2.4, fit well pseudo first order model but did not fit pseudo second order model. At initial pH 2.6-7, Cr(VI) removal data did not fit, anymore, pseudo first order model, but fit well pseudo second order model instead. The change in the order of Cr(VI) removal process takes place in the pH range 2.4-2.6 under the experimental conditions. Other two models were tested for the kinetics of chromium sorption with the data fitting well pseudo second order model in the whole range of pH. An increase in cation exchange capacity, sorbent acidity and base neutralization capacity was recorded for the carbon sorbent after the interaction with acidified Cr(VI) indicating the oxidation processes on the carbon surface accompanying Cr(VI) reduction.
The treatment of piggery wastes was carried out at pilot scale using a multilayered metal-activated carbon system followed by carbon bed filtration. The physicochemical properties were obtained from treated samples with aqueous solutions containing metallic ions such as Ag+, Cu2+, Na+, K+ and Mn2+, which main obsevations are subjected to inspect surface properties, color removal properties by Uv/Vis and EDX. Multilayered metal-activated carbons were contacted with waste water to investigation of the simultaneous catalytic effect for the COD, BOD, T-N and T-P removal. The removal results for the piggery waste using multilayered metal-activated carbon bed was achieved the satisfactory removal performance under permitted values of Ministry of Environment of Korea. The high efficiency of the multilayered metal-activated carbon bed was determined by the performance of this material for trapping, catalytic effect and adsorption of organic solid particles.
Phosphoric acid-activated carbon WP's and zinc chloride-activated carbons WZ's were developed from wild cherry stones. The textural properties of the activated carbons were determined from nitrogen adsorption data at 77 K and the chemistry of the carbon surface, i.e. the surface carbon-oxygen groups (type and amount) was determined from the base and acid neutralization capacities (Boehm method). The adsorption of phenol, p-nitrophenol, p-chlorophenol, dinitrophenol and dichlorophenol was followed at 298 K. The activated carbons obtained were characterized by high surface area and large pore volumes as well as by high surface concentration of C-O groups. The investigated carbons exhibited high adsorption capacities towards phenols with these capacities increased with the increase of molecular weight and the decrease of the solubility of phenol in water. However, no general relationship could be observed between the adsorption capacities of carbons and any of their textural parameters or their surface chemistry. This may be attributed to the many factors controlling phenol adsorption and the different types and mechanisms of adsorption involved.
Graphite has hexagonal closed packing structure with two bonding characteristics of van der Waals bonding between the carbon layers at c axis, and covalent bonding in the carbon layer at a and b axis. Graphite has high tolerant to the extreme conditions of high temperature and neutron irradiations rather than any other materials of metals and ceramics. However, carbon elements easily react with oxygen at as low as 400C. Considering the increasing production of today of hydrogen and electricity with a nuclear reactor, study of oxidation characteristics of graphite is very important, and essential for the life evaluation and design of the nuclear reactor. Since the oxidation behaviors of graphite are dependent on the shapes of testing specimen, critical care is required for evaluation of nuclear reactor graphite materials. In this work, oxidation rate and amounts of the isotropic graphite (IG-110, Toyo Carbon), currently being used for the Koran nuclear reactor, are investigated at various temperature. Oxidation process or principle of graphite was figured out by measuring the oxidation rate, and relation between oxidation rate and sample shape are understood. In the oxidation process, shape effect of volume, surface area, and surface to volume ratio are investigated at 600℃, based on the sample of ASTM C 1179-91.