논문 상세보기

An innovative approach utilizing bimetallic Ag@Sn‑oxy nanocomposite with rGO‑decorated glassy carbon‑modified electrode for high‑performance detection of hydroquinone KCI 등재

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/444389
구독 기관 인증 시 무료 이용이 가능합니다. 4,600원
Carbon Letters (Carbon letters)
한국탄소학회 (Korean Carbon Society)
초록

Herein, the electrochemical technique was employed to detect hydroquinone (HQ) using a modified glassy carbon electrode (GCE) with reduced graphene oxide (rGO) and silver (Ag)-decorated tin oxy-nanoparticles (SnONPs) to form Ag@SnONPs/ rGO nanocomposites (NC). The Ag@SnONPs/rGO nanocomposites were morphologically characterized using multiple analytical methods such as XRD, Raman, XPS, HR-SEM, and HR-TEM. This study revealed that Ag@SnONPs/rGO-NC exhibits excellent conductivity due to the presence of rGO that provides potential π–π interactions with SnONPs, while Ag enhances electron-transfer kinetics. This facilitates efficient charge transport within the sensor, thereby improving HQ adsorption. The key advantages of the sensor demonstrate a concentration of 0.5–200 μM, and a low detection limit value of 0.010 μM, and a high sensitivity value of 6.0746 μA μM−1 cm2. Under optimal conditions, the Ag@SnONPs/rGO sensor may be used to determine HQ and its concentration using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The Ag@SnONPs-rGO/GCE sensor demonstrated excellent reproducibility, repeatability, and stability. Moreover, the suggested bimetallic nanocomposite effectively determined the presence of HQ in water and cosmetic samples.

목차
An innovative approach utilizing bimetallic Ag@Sn-oxy nanocomposite with rGO-decorated glassy carbon-modified electrode for high-performance detection of hydroquinone
    Abstract
    1 Introduction
    2 Experimental sections
        2.1 Materials
        2.2 Material preparation
            2.2.1 Preparation of SnONPsrGO nanocomposites
            2.2.2 Preparation of Ag@SnONPs nanocomposites
            2.2.3 Preparation of Ag@SnONPsrGO nanocomposites
        2.3 Preparation of modified electrode
    3 Results and discussion
        3.1 Structure and morphology of Ag@SnONPsrGOGCE nanocomposite
        3.2 Electrochemical characterization
        3.3 Electrochemical determination of HQ using cyclic voltammetry
        3.4 Hydroquinone detection at Ag@SnONPsrGOGCE using DPV analysis
        3.5 Effect of interference studies from DPV
        3.6 Reproducibility and stability studies of Ag@SnONPsrGO electrode
        3.7 Proposed sensing mechanism
        3.8 Real sample analysis
    4 Conclusions
    Acknowledgements 
    References
저자
  • Sethupathy Ramanathan(Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India)
  • Panneerselvam Perumal(Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India) Corresponding author