검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 19

        1.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure evolution during sintering of the W-5 wt.%Cu nanocomposite powders was investigated for the purpose of developing a high density W-Cu alloy. The W-5 wt.%Cu nanopowder compact, fully-densified during sintering at 1623 K, revealed a homogeneous microstructure that consists of high contiguity structures of W-W grains and an interconnected Cu phase located along the edges of the W grains. The Vickers hardness of the sintered W-5 wt.%Cu specimen was Hv much higher than that ( Hv) of the conventional heavy alloy. This result is mostly due to the higher contiguity microstructure of the W grains compared to the conventional W heavy alloy.
        3,000원
        2.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The key concept of nanopowder agglomerate sintering (NAS) is to enhance material transport by controlling the powder interface volume of nanopowder agglomerates. Using this concept, we developed a new approach to full density processing for the fabrication of pure iron nanomaterial using Fe nanopowder agglomerates from oxide powders. Full density processing of pure iron nanopowders was introduced in which the powder interface volume is manipulated in order to control the densification process and its corresponding microstructures. The full density sintering behavior of Fe nanopowders optimally size-controlled by wet-milling treatment was discussed in terms of densification process and microstructures.
        4,000원
        3.
        2012.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study has been performed on the full density sintering of Fe nanopowder and the surface hardening by plasma ion nitriding. The Fe sintered part was fabricated by pressureless sintering of the Fe nanopowder at in which the nanopowder agglomerates were controlled to have 0.5-5 sized agglomerates with 150 nm Fe nanopowders. The green compact with 46% theoretical density(T.D.) showed a homogeneous microstructure with fine pores below 1 . After sintering, the powder compact underwent full densification process with above 98%T.D. and uniform nanoscale microstructure. This enhanced sintering is thought to be basically due to the homogeneous microstructure in the green compact in which the large pores are removed by wet-milling. Plasma ion nitriding of the sintered part resulted in the formation of '- equilibrium phase with about 12 thickness, leading to the surface hardening of the sintered Fe part. The surface hardness was remarkably increased from 176 for the matrix to 365 .
        4,000원
        4.
        2009.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Development of nanoparticulate materials technology is essential to processing of highly functional nanoparticulate materials and components with small and complex shape. In this paper, the effect of particle size on surface roughness and shrinkage of sintered Fe-8 wt%Ni nanopowder components fabricated by PIM were investigated. The Fe-8 wt%Ni nanopowder was prepared by hydrogen reduction of ball-milled FeO-NiO powder. Feedstock of nanopowder prepared with the wet-milled powder was injection molded into double gear shaped part at 120. After sintering, the sintered part showed near full densified microstructure having apparently no porosity (98%T.D.). Surface roughness of sintered bulk using nanopowder was less than 815 nm and it was about seven times lower than 7 m that is typically obtainable from a sintered part produced from PIM.
        4,000원
        5.
        2009.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of light scattering layers (400 nm, TiO particle) of 4 m thickness on the dye-sensitized solar cell has been investigated with a 12 m thickness of photo-anode (20 nm, TiO particle). Two different structures of scattering layers (separated and back) were applied to investigate the light transmitting behaviors and solar cell properties. The light transmittance and cell efficiency significantly improved with inserting scattering layers. The back scattering layer structure had more effective transmitting behavior, but separated scattering layer (center: 2 m, back: 2 m) structure (9.83% of efficiency) showing higher efficiency (0.6%), short circuit current density (0.26 mA/cm) and fill factor (0.02). The inserting separating two scattering layers improved the light harvesting, and relatively thin back scattering layer (2 m of thickness) minimized interruption of ion diffusion in liquid electrolyte.
        4,000원
        7.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sintering behavior of iron nanopowder agglomerate compact prepared by slurry compaction method was investigated. The Fe nanopowder agglomerates were prepared by hydrogen reduction of spray dried agglomerates of ball-milled nanopowder at various reduction temperatures of , and , respectively. It was found that the Fe nanopowder agglomerates produced at higher reduction temperature have a higher green density compact which consists of more densified nanopowder agglomerates with coarsed nanopowders. The sintering behavior of the Fe nanopowder agglomerates strongly depended on the powder packing density in the compact and microstructure of the agglomerated nanopowder. It was discussed in terms of two sintering factors affecting the entire densification process of the compact.
        4,000원
        8.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of Cu content on hydrogen reduction behavior of ball-milled -CuO nanocomposite powders was investigated. Hydrogen reduction behavior and reduction percent() of nanopowders were characterized by thermogravimetry (TG) and hygrometry measurements. Activation energy for hydrogen reduction of nanopowders with different Cu content was calculated at each heating rate and reduction percent(). The activation energy for reduction of obtained in this study existed in the ranging from 129 to 139 kJ/mol, which was in accordance with the activation energy for powder reduction of conventional micron-sized
        4,000원
        9.
        2006.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Through the volume change of Sn in a low-temperature phase transformation, the Sn nanopowder with high, purity, was fabricated by an economic and eco-friendly process. The fine cracks were spontaneously generated. in, Sn ingot, which was reduced to powders in the repetition of phase transformation. The Sn nanopowder with 50 run in size was obtained by the 24th repetitions of phase transformation by low-temperature and ultrasonic treatments. Also, the powder was fabricated by the oxidation of the produced Sn powder to the ingot and milled by the ultrasonic milling method. The nanopowder of 20 nm in size was fabricated after the milling for 180 h
        4,000원
        10.
        2006.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The brazing adhesion properties of Ag coated W-Ag electric contact on the Cu substrate have been investigated in therms of microstructure, phase equilibrium and adhesion strength. Precoating of Ag layer ( in thickness) on the contact material was done by electro-plating method. Subsequently the brazing treatment was conducted by inserting BCuP-5 filler metal (Ag-Cu-P alloy) layer between Ag coated W-Ag and Cu substrate and annealing at in atmosphere. The optimum brazing temperature of was semi-empirically calculated on the basis of the Cu atomic diffusion profile in Ag layer of commercial electric contact produced by the same brazing process. As a mechanical test of the electric contact after brazing treatment the adhesion strength between the electric contact and Cu substrate was measured using Instron. The microstructure and phase equilibrium study revealed that the sound interlayer structure was formed by relatively low brazing treatment at . Thin Ag electro-plated layer precoated on the electric contact ( in thickness) is thought to be enough for high adhesion strength arid sound microstructure in interface layer.
        4,000원
        18.
        2001.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An optimum route to fabricate the ferrous alloy dispersed nanocomposites such as /Fe-Ni and /Fe-Co with sound microstructure and desired properties was investigated. The composites were fabricated by the sintering of powder mixtures of and nano-sized ferrous alloy, in which the alloy was prepared by solution-chemistry routes using metal nitrates powders and a subsequent hydorgen reduction process. Microstructural observation of reduced powder mixture revealed that the Fe-Ni or Fe-Co alloy particles of about 20 nm in size homogeneously surrounded , forming nanocomposite powder. The sintered /Fe-Ni composite showed the formation of Fe phase, while the reaction phases were not observed in /Fe-Co composite. Hot-pressed /Fe-Ni composite showed improved mechanical properties and magnetic response. The properties are discussed in terms of microstructural characteristics such as the distribution and size of alloy particles.
        4,000원
        19.
        1999.12 서비스 종료(열람 제한)
        Sixteen isolates showing relatively strong antagonicity against the ginger rhizome rot pathogen, Pythium zingiberum, were selected among the 155 isolates from ginger rhizome surfaces and rhizospheres of ginger cultivation fields in Wanju, Chonbuk. The isolate, 'HB 26-5'showing the strongest antagonicity was finally selected by testing duration of inhibition effect and pathogenicity to ginger. The isolated antagonistic microorganism, 'HB 26-5' was rod shape, gram positive and formed endospore. The isolate produced acids utilizing glucose, arabinose, xylose and mannitol, and acetoin at VP test, and grew anaerobically. Temperature range for growth was from 10 to 40℃ . Reaction to catalase and gelatin, hydrolysis were positive, and casein hydrolysis and indol production were negative. Based on the mycological characters and the fatty acid composition, it was identified as Bacillus polymyxa. The pathogenicity test of isolated Bacillus polymyxa 'HB 26-5'on 22 crop cultivars resulted that only the lettuce was influenced in germination, and the others were not affected.