Mass production-capable powder was synthesized for use as cathode material in state-of-the-art lithium-ion batteries. These batteries are main powder sources for high tech-end digital electronic equipments and electric vehicles in the near future and they must possess high specific capacity and durable charge-discharge characteristics. Amorphous silicone was quite superior to crystalline one as starting material to fabricate silicone oxide with high reactivity between precursors of sol-gel type reaction intermediates. The amorphous silicone starting material also has beneficial effect of efficiently controlling secondary phases, most notably . Lastly, carbon was coated on powders by using sucrose to afford some improved electrical conductivity. The carbon-coated cathode material was further characterized using SEM, XRD, and galvanostatic charge/discharge test method for morphological and electrochemical examinations. Coin cell was subject to 1.5-4.8 V at C/20, where 74 mAh/g was observed during primary discharge cycle.