Tin/graphite composites are prepared as anode materials for Li-ion batteries using a dry ball-milling process. The main experimental variables in this work are the ball milling time (0–8 h) and composition ratio (tin:graphite=5:95, 15:85, and 30:70 w/w) of graphite and tin powder. For comparison, a tin/graphite composite is prepared using wet ball milling. The morphology and structure of the different tin/graphite composites are investigated using X-ray diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and scanning and transmission electron microscopy. The electrochemical properties of the samples are also examined. The optimal dry ball milling time for the uniform mixing of graphite and tin is 6 h in a graphite-30wt.%Sn sample. The electrode prepared from the composite that is dry-ballmilled for 6 h exhibits the best cycle performance (discharge capacity after 50th cycle: 308 mAh/g and capacity retention: 46%). The discharge capacity after the 50th cycle is approximately 112 mAh/g, higher than that when the electrode is composed of only graphite (196 mAh/g after 50th cycle). This result indicates that it is possible to manufacture a tin/graphite composite anode material that can effectively buffer the volume change that occurs during cycling, even using a simple dry ball-milling process.
Phosphorus is an element that plays many important roles in powder metallurgy as an alloy element. The purpose of this study is to investigate the influence of phosphorus addition on the microstructures and mechanical properties of sintered low-alloy steel. The sintered low-alloy steels Fe-0.6%C-3.89%Ni-1.95%Cu-1.40%Mo-xP (x=0, 0.05, 0.10, 0.15, 0.20%) were manufactured by compacting at 700 MPa, sintering in H2-N2 at 1260℃, rapid cooling, and low-temperature tempering in Ar at 160℃. The microstructure, pore, density, hardness, and transverse rupture strength (TRS) of the sintered low-alloy steels were evaluated. The hardness increased as the phosphorus content increased, whereas the density and TRS showed maximum values when the content of P was 0.05%. Based on microstructure observation, the phase of the microstructure changed from bainite to martensite as the content of phosphorus is increased. Hence, the most appropriate addition of phosphorus in this study was 0.05%.
Layered LiNi0.83Co0.11Mn0.06O2 cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, nondoping pristine LiNi0.83Co0.11Mn0.06O2 cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical α-NaFeO2-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dualdoped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).
One-dimensional rutile TiO2 is an important inorganic compound with applicability in sensors, solar cells, and Li-based batteries. However, conventional synthesis methods for TiO2 nanowires are complicated and entail risks of environmental contamination. In this work, we report the growth of TiO2 nanowires on a Ti alloy powder (Ti-6wt%Al- 4wt%V, Ti64) using simple thermal oxidation under a limited supply of O2. The optimum condition for TiO2 nanowire synthesis is studied for variables including temperature, time, and pressure. TiO2 nanowires of ~5 μm in length and 100 nm in thickness are richly synthesized under the optimum condition with single-crystalline rutile phases. The formation of TiO2 nanowires is greatly influenced by synthesis temperature and pressure. The synthesized TiO2 nanowires are characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM).
Fe3O4/Fe/graphene nanocomposite powder is synthesized by electrical wire explosion of Fe wire and dispersed graphene in deionized water at room temperature. The structural and electrochemical characteristics of the powder are characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, field-emission transmission electron microscopy, cyclic voltammetry, and galvanometric discharge-charge method. For comparison, Fe3O4/Fe nanocomposites are fabricated under the same conditions. The Fe3O4/Fe nanocomposite particles, around 15-30 nm in size, are highly encapsulated in a graphene matrix. The Fe3O4/Fe/graphene nanocomposite powder exhibits a high initial charge specific capacity of 878 mA/g and a high capacity retention of 91% (798 mA/g) after 50 cycles. The good electrochemical performance of the Fe3O4/Fe/graphene nanocomposite powder is clearly established by comparison of the results with those obtained for Fe3O4/Fe nanocomposite powder and is attributed to alleviation of volume change, good distribution of electrode active materials, and improved electrical conductivity upon the addition of graphene.
Tin is one of the most promising anode materials for next-generation lithium-ion batteries with a high energy density. However, the commercialization of tin-based anodes is still hindered due to the large volume change (over 260%) upon lithiation/delithiation cycling. To solve the problem, many efforts have been focused on enhancing structural stability of tin particles in electrodes. In this work, we synthesize tin nano-powders with an amorphous carbon layer on the surface and surroundings of the powder by electrical wire explosion in alcohol-based liquid media at room temperature. The morphology and microstructures of the powders are characterized by scanning electron microscopy, Xray diffraction, Raman spectroscopy, and transmission electron microscopy. The electrochemical properties of the powder for use as an anode material for lithium-ion battery are evaluated by cyclic voltammetry and a galvanometric dischargecharge method. It is shown that the carbon-coated tin nano-powders prepared in hexanol media exhibit a high initial charge specific capacity of 902 mAh/g and a high capacity retention of 89% after 50 cycles.
Anodic aluminum oxide (AAO) has been widely used for the development and fabrication of nano-powder with various morphologies such as particle, wire, rod, and tube. So far, many researchers have reported about shape control and fabrication of AAO films. However, they have reported on the shape control with different diameter and length of anodic aluminum oxide mainly. We present a combined mild-hard (or hard-mild) anodization to prepare shape-controlled AAO films. Two main parameters which are combination mild-hard (or hard-mild) anodization and run-time of voltage control are applied in this work. The voltages of mild and hard anodization are respectively 40 and 80 V. Anodization was conducted on the aluminum sheet in 0.3 mole oxalic acid at 4oC. AAO films with morphologies of varying interpore distance, branch-shaped pore, diameter-modulated pore and long funnel-shaped pore were fabricated. Those shapes will be able to apply to fabricate novel nano-materials with potential application which is especially a support to prevent volume expansion of inserted active materials, such as metal silicon or tin powder, in lithium ion battery. The silicon powder electrode using an AAO as a support shows outstanding cycle performance as 1003 mAh/g up to 200 cycles.
The electrochemical properties of cells assembled with the LiNiO2 (LNO) recycled from cathode materialsof waste lithium secondary batteries (Li[Ni,Co,Mn]O2), were evaluated in this study. The leaching, neutralization andsolvent extraction process were applied to produce high-purity NiSO4 solution from waste lithium secondary batteries.High-purity NiO powder was then fabricated by the heat-treatment and mixing of the NiSO4 solution and H2C2O4.Finally, LiNiO2 as a cathode material for lithium ion secondary batteries was synthesized by heat treatment and mixingof the NiO and Li2CO3 powders. We assembled the cells using the LiNiO2 powders and evaluated the electrochemicalproperties. Subsequently, we evaluated the recycling possibility of the cathode materials for waste lithium secondary bat-tery using the processes applied in this work.
Tool steels serve a large range of applications including hot and cold workings of metals and injection mouldings of plastics or light alloys. The high speed steels (HSS) are specifically used as cutting tools and wear parts because it has high strength, wear resistance and hardness along with appreciable toughness and fatigue resistance. From the view of HSS microstructure, it can be described as metallic matrix composites formed by a ferrous with a dispersion of hard and wear resistant carbides. The experimental specimens were manufactured using the PIM with T42 powders (50~80 vol.%) and polymer (20~50 vol.%). The green parts were debinded in n-hexane solution at for 8 hours and thermal debinded at an mixed gas atmosphere for 8 hours. Specimens were sintered in high vacuum ( Torr) and various temperatures.
In order to investigate the microstructure and mechanical properties of WC-10 wt% Co insert tool alloy fabricated by PIM (Powder Injection Molding) process, the feedstock of WC-10 wt% and wax used as a kind of binder were mixed together by two blade mixer. After injection molding, the debinding process was carried out by two-steps. First, solvent extraction, in which the binder was eliminated by putting the specimen into normal hexane for 24 hrs at , and subsequently thermal debinding which was conducted at and for 6 hrs in the mixed gas of , respectively. Meantime, in order to compensate the decarburization due to hydrogen, 1.2~1.8% of carbon was added to ensure the integrity of the phase. Finally, the specimens were sintered in vacuum under different temperatures, and the relative density of 99.8% and hardness of 2100 Hv can be achieved when sintered at , even the TRS is lower than the conventional sintering process.
Recently, nanotubes have considerably researched because of their novel application about photocatalysis, dye-sensitized solar cells (DSSCs), lithium ion battery, etc. In this work, self-standing nanotube arrays were fabricated by anodic oxidation method using pure Ti foil as a working electrode in ethylene glycole with 0.3M + . Growth behavior of nanotube arrays was compared according to temperature, voltage and time. The morphology, structure and crystalline of anodized nanotube arrays were observed by FE-SEM (field emission scanning electron microscope) and XRD (X-ray diffraction).
Ni nanowires were fabricated using anodic aluminum oxide (AAO) membrane as a template by electrochemical deposition. The nanowires were formed within the walls of AAO template with 200 nm in pore diameter. After researching proper voltage and temperature for electrochemical deposition, the length of Ni nanowires was controlled by deposition time and the supply of electrolyte. The morphology and microstructure of Ni nanowires were investigated by field emission scanning electron microscope (FE-SE), X-ray diffraction (XRD) and transmission electron microscope (TEM).
High speed steels (HSS) were used as cutting tools and wear parts, because of high strength, wear resistance, and hardness together with an appreciable toughness and fatigue resistance. Conventional manufacturing process for production of components with HSS was used by casting. The powder metallurgy techniques were currently developed due to second phase segregation of conventional process. The powder injection molding method (PIM) was received attention owing to shape without additional processes. The experimental specimens were manufactured with T42 HSS powders (59 vol%) and polymer (41 vol%). The metal powders were prealloyed water-atomised T42 HSS. The green parts were solvent debinded in normal n-Hexane at for 24 hours and thermal debinded at mixed gas atmosphere for 14 hours. Specimens were sintered in , gas atmosphere and vacuum condition between 1200 and . In result, polymer degradation temperatures about optimum conditions were found at and . After sintering at gas atmosphere, maximum hardness of 310Hv was observed at . Fine and well dispersed carbide were observed at this condition. But relative density was under 90%. When sintering at gas atmosphere, relative density was observed to 94.5% at . However, the low hardness was obtained due to decarbonization by hydrogen. In case of sintering at the vacuum of torr at temperature of , full density and 550Hv hardness were obtained without precipitation of MC and in grain boundary.
Iron(Fe)-Molybdenum(Mo) alloyed nanoparticles and nanowires were produced by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl() and Molybdenum hexacarbonyl(). The influence of CVC parameter on the formation of nanoparticle, nanowire and size control was studied. The size of Fe-Mo alloyed nanoparticles can be controlled by quantity of gas flow. Also, Fe-Mo alloyed nanowires were produced by control of the work chamber pressure. Moreover, we investigated close correlation of size and morphology of Fe-Mo nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. Obtained nanoparticles and nanowires were investigated by field emission scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction.
Self-standing TiO2 nanotube arrays were fabricated by potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as electrolytes with small addition of NH4F and H2O. The influences of anodization temperature and time on the morphology and formation of TiO2 nanotube arrays were investigated. The fabricated TiO2 nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO2 nanotube show a similar value, whereas the thickness show a different trend with reaction temperature. The thickness of TiO2 nanotube arrays anodized at 20℃ and 30℃ was time-dependent, but on the other hand its at 10℃ are independent of anodization time. The conversion efficiency is low, which is due to a morphology breaking of the TiO2 nanotube arrays in manufacturing process of photoelectrode.
Al-Li-Cu-Mg합금에서 0~9% 범위의 stretching이 석출상 및 기계적성질에 미치는 영향을 조사하였다. Stretching을 하였을 경우 δ'(A13Li)석출상의 크기는 변화가 없었으나 T1(Al2CuLi)석출상은 미세하고 균일하게 분포하였으며 입계석출물도 비교적 적게 형성되었다. 또한 변형부위에 분포하는 δ'석출상에 의한 planar slip도 감소되었다. 항복강도는 150˚C에서 120시간 시효처리 하였을때 stretching을 하지 않은 경우 328~342 Mpa에서 6% stretching을 하였을 경우 466~488MPa로 향상되었으며 연신율은 같은 조건에서 각각 9.7~10.4%와 5~5.7%를 나타내었다.
dynamic strain gage와 12bit AD(analog to digital converter)를 이용한 새로운 제진특성 측정 장치를 제작하였다. 이 장치를 이용하여 일반재료와 고제진재료의 제진특성을 연구하였다. 또한 열처리 조건, 초기 진동 진폭, 그리고 내부응력의 변화에 따른 SDC(specific damping capacity)변화에 관하여 연구하였다. 일반재료와 제진재료의 비교에서, 제진재료는 진동을 가한 후 0.4초 이내에 진동 진폭이 거의 사라졌지만, 같은 시간에 일반재료의 진동 진폭은 거의 감소하지 않았다. Fe-16wt. %Cr계 합금의 제진 특성은 노냉일 때 SDC max 가 40%이상이었고, Fe-5.5wt.%Ai합금의 제진 특성은 공냉일 때 SDC max값이 30%이상이었다. 초기 진동 진폭이 증가할수록 최대 제진 특성치는 낮은 진동 진폭 영역으로 이동하였다. 제진 특성은 내부 응력이 증가할수록 급격한 감소를 보였으며, 본 연구에서 개발한 제진측정 장치는 낮은 진동 진폭의 영역에서 정확한 제진 특성 측정이 가능하였다.
기계적 합금화 방법으로 제조된 A-8wt%Fe합금분말의 진공고온 소결거동을 분석하였고 이 소결체의 고온변형거동을 연구하기 위하여 350˚C-450˚C의 온도 범위에서 여러 변형률속도로 압축 시험을 수행하였다. 또한 이 소결체의 열적안정성을 조사하기 위하여 300˚C-500˚C온도 범위에서 각각 60시간 동안 열처리한 후 경도시험을 수행하였다. 압축응력은 변형률이 증가함에 따라 급격히 증가하여 변형률 약 3%에서 최대응력에 이르렀으며, 최대응력 이후 다소 연화현상을 보인 후 유동응력은 가공경화돠 동적 재결정의 평형률 30%까지 일정하였다. 또한 60시간 열처리에 따른 소결시편의 경도는 400˚C에서 부터 급격히 감소하였다.