새로운 급속소결방법인 고주파유도가열 소결법과 펄스전류활성 소결법을 이용하여 습식 볼밀링으로 혼합한 WC-8wt.%Co분말에 60MPa의 압력과 90%의 고주파출력 또는 2800A의 필스전류를 가하여 상대밀도가 98.6% 이상인 초경재료를 2분이내의 짧은 시간에 제조하였다. 초기의 WC분말의 입도가 미세해짐에 따라 고주파유도가열 소결법과 펄스전류활성 소결법 모두 소결시간이 단축되는 경향을 보였으며 그 소결체의 결정립 크기도 감소하였다. 고주파유도가열 소결
급속소결방법인 고주파유도가열 소결법과 펄스전류활성 소결법을 이용하여 습식 볼밀링으로 혼합한 WC-8wt.%Ni분말에 60MPa의 압력과 고주파유도가열장치의 경우 전체 용량 (15kw)의 90%에 해당하는 고주파출력을, 펄스전류활성 소결장치의 경우 2800A의 펄스전류를 가하여 치밀한 소결체를 2분이내의 짧은 시간에 제조하였다. WC 초기입자크기가 증가함에 따라 제조된 소결체의 입자크기와 평균자유행로는 증가하였다. 또한 WC 결정립 크기가 증가함에 따라
Dense -20vol.%SiC composite was synthesized by high-frequency induction-heated combustion synthesis(HFIHCS) method within 2 minutes in one step from elemental powder mixture of W, Si and C. Simultaneous combustion synthesis and densification were accomplished under the combined effects of an induced current and mechanical pressure. Highly dense -20vol.%SiC with relative density of up to 97% was produced under simultaneous application of 60MPa pressure and the induced current. The average grain size of was about 5.2. The hardness and fracture toughness values obtained were 1700kg/ and , respectively.
WC and dense WC-10 vol%Co materials with grain size of~1 were synthesized by high-frequency induction heated combustion synthesis (HFIHCS) method in one step from elemental powders of W, C and Co within several minutes. Simultaneous combustion synthesis and densification were accomplished under the combined effects of an induced current and mechanical pressure. In the absence of cobalt additive, WC can be formed, but its relative density was low (about 73%) under simultaneous application of a 60 MPa pressure and the induced current. However, in the presence of 10 vol.%Co, the relative density increased to 99% under the same experimental condition. The percentages of the total shrinkage occurring before and during the synthesis reaction of WC-10 vol.%Co were 5% and 51%, respectively. The fracture toughness and hardness values of WC-10 vol.%Co were 10 MPa . m and 1840 kg/, respectively.
We combined Field-Activated Combustion Synthesis(FACS) with mechanical pressure to produce dense WC-20 vol.%Co composite in one step. The hardness, the fracture toughness and the relative density of the dense WC-20 vol.%Co were investigated. Under the application of 60 MPa pressure and 3000A current on the reactants, the relative density of WC-20 vol.%Co composite was 99.4%. The fracture toughness and hardness were and respectively. The fracture toughness and hardness of WC-20 vol.%Co composite produced by FAPACS were lower than that of nanostructured composite, but similar to commercial ones. Therefore we concluded that the FAPACS method which can produce WC-20 vol.%Co within several minutes in one step is superior to conventional ones.