검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 28

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a core-shell powder and sintered specimens using a mechanically alloyed (MAed) Ti-Mo powder fabricated through high-energy ball-milling are prepared. Analysis of sintering, microstructure, and mechanical properties confirms the applicability of the powder as a sputtering target material. To optimize the MAed Ti-Mo powder milling process, phase and elemental analyses of the powders are performed according to milling time. The results reveal that 20 h of milling time is the most suitable for the manufacturing process. Subsequently, the MAed Ti-Mo powder and MoO3 powder are milled using a 3-D mixer and heat-treated for hydrogen reduction to manufacture the core-shell powder. The reduced core-shell powder is transformed to sintered specimens through molding and sintering at 1300 and 1400oC. The sintering properties are analyzed through X-ray diffraction and scanning electron microscopy for phase and porosity analyses. Moreover, the microstructure of the powder is investigated through optical microscopy and electron probe microstructure analysis. The Ti-Mo core-shell sintered specimen is found to possess high density, uniform microstructure, and excellent hardness properties. These results indicate that the Ti-Mo core-shell sintered specimen has excellent sintering properties and is suitable as a sputtering target material.
        4,000원
        2.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aerospace and power generation industries have an increasing demand for high-temperature, highstrength materials. However, conventional materials typically lack sufficient fracture toughness and oxidation resistance at high temperatures. This study aims to enhance the high-temperature properties of Nb-Si-Ti alloys through ball milling. To analyze the effects of milling time, the progression of alloying is evaluated on the basis of XRD patterns and the microstructure of alloy powders. Spark plasma sintering (SPS) is employed to produce compacts, with thermodynamic modeling assisting in predicting phase fractions and sintering temperature ranges. The changes in the microstructure and variation in the mechanical properties due to the adjustment of the sintering temperature provide insights into the influence of Nb solid solution, Nb5Si3, and crystallite size within the compacts. By investigating the changes in the mechanical properties through strengthening mechanisms, such as precipitation strengthening, solid solution strengthening, and crystallite refinement, this study aims to verify the applicability of Nb-Si-Ti alloys in advanced material systems.
        4,000원
        3.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Machine learning-based data analysis approaches have been employed to overcome the limitations in accurately analyzing data and to predict the results of the design of Nb-based superalloys. In this study, a database containing the composition of the alloying elements and their room-temperature tensile strengths was prepared based on a previous study. After computing the correlation between the tensile strength at room temperature and the composition, a material science analysis was conducted on the elements with high correlation coefficients. These alloying elements were found to have a significant effect on the variation in the tensile strength of Nb-based alloys at room temperature. Through this process, a model was derived to predict the properties using four machine learning algorithms. The Bayesian ridge regression algorithm proved to be the optimal model when Y, Sc, W, Cr, Mo, Sn, and Ti were used as input features. This study demonstrates the successful application of machine learning techniques to effectively analyze data and predict outcomes, thereby providing valuable insights into the design of Nb-based superalloys.
        4,000원
        4.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study demonstrates the effect of the compaction pressure on the microstructure and properties of pressureless-sintered W bodies. W powders are synthesized by ultrasonic spray pyrolysis and hydrogen reduction using ammonium metatungstate hydrate as a precursor. Microstructural investigation reveals that a spherical powder in the form of agglomerated nanosized W particles is successfully synthesized. The W powder synthesized by ultrasonic spray pyrolysis exhibits a relative density of approximately 94% regardless of the compaction pressure, whereas the commercial powder exhibits a relative density of 64% under the same sintering conditions. This change in the relative density of the sintered compact can be explained by the difference in the sizes of the raw powder and the densities of the compacted green body. The grain size increases as the compaction pressure increases, and the sintered compact uniaxially pressed to 50 MPa and then isostatically pressed to 300 MPa exhibits a size of 0.71 m. The Vickers hardness of the sintered W exhibits a high value of 4.7 GPa, mainly due to grain refinement.
        4,000원
        5.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The SnSe single crystal shows an outstanding figure of merit (ZT) of 2.6 at 973 K; thus, it is considered to be a promising thermoelectric material. However, the mass production of SnSe single crystals is difficult, and their mechanical properties are poor. Alternatively, we can use polycrystalline SnSe powder, which has better mechanical properties. In this study, surface modification by atomic layer deposition (ALD) is chosen to increase the ZT value of SnSe polycrystalline powder. SnSe powder is ground by a ball mill. An ALD coating process using a rotary-type reactor is adopted. ZnO thin films are grown by 100 ALD cycles using diethylzinc and H2O as precursors at 100oC. ALD is performed at rotation speeds of 30, 40, 50, and 60 rpm to examine the effects of rotation speed on the thin film characteristics. The physical and chemical properties of ALD-coated SnSe powders are characterized by scanning and tunneling electron microscopy combined with energy-dispersive spectroscopy. The results reveal that a smooth oxygenrich ZnO layer is grown on SnSe at a rotation speed of 30 rpm. This result can be applied for the uniform coating of a ZnO layer on various powder materials.
        4,000원
        6.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Interest in eco-friendly materials with high efficiencies is increasing significantly as science and technology undergo a paradigm shift toward environment-friendly and sustainable development. MXenes, a class of two-dimensional inorganic compounds, are generally defined as transition metal carbides or nitrides composed of few-atoms-thick layers with functional groups. Recently MXenes, because of their desirable electrical, thermal, and mechanical properties that emerge from conductive layered structures with tunable surface terminations, have garnered significant attention as promising candidates for energy storage applications (e.g., supercapacitors and electrode materials for Li-ion batteries), water purification, and gas sensors. In this review, we introduce MXenes and describe their properties and research trends by classifying them into two main categories: transition metal carbides and nitrides, including Ti-based MXenes, Mo-based MXenes, and Nb-based MXenes.
        4,600원
        7.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ti-based alloys are widely used in biomaterials owing to their excellent biocompatibility. In this study, Ti- Mn-Cu alloys are prepared by high-energy ball milling, magnetic pulsed compaction, and pressureless sintering. The microstructure and microhardness of the Ti-Mn-Cu alloys with variation of the Cu addition and compaction pressure are analyzed. The correlation between the composition, compaction pressure, and density is investigated by measuring the green density and sintered density for samples with different compositions, subjected to various compaction pressures. For all compositions, it is confirmed that the green density increases proportionally as the compaction pressure increases, but the sintered density decreases owing to gas formation from the pyrolysis of TiH2 powders and reduction of oxides on the surface of the starting powders during the sintering process. In addition, an increase in the amount of Cu addition changes the volume fractions of the α-Ti and β-Ti phases, and the microstructure of the alloys with different compositions also changes. It is demonstrated that these changes in the phase volume fraction and microstructure are closely related to the mechanical properties of the Ti-Mn-Cu alloys.
        4,000원
        8.
        2020.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The present study demonstrates the effect of magnetic pulse compaction and spark plasma sintering on the microstructure and mechanical property of a sintered W body. The relative density of green specimens prepared by magnetic pulse compaction increases with increase in applied pressure, but when the applied pressure is 3.4 GPa or more, some cracks in the specimen are observed. The pressureless-sintered W shows neck growth between W particles, but there are still many pores. The sintered body fabricated by spark plasma sintering exhibits a relative density of above 90 %, and the specimen sintered at 1,600 oC after magnetic pulse compaction shows the highest density, with a relative density of 93.6 %. Compared to the specimen for which the W powder is directly sintered, the specimen sintered after magnetic pulse compaction shows a smaller crystal grain size, which is explained by the reduced W particle size and microstructure homogenization during the magnetic pulse compaction process. Sintering at 1,600 oC led to the largest Vickers hardness value, but the value is slightly lower than that of the conventional W sintered body, which is attributed mainly to the increased grain size and low sintering density.
        4,000원
        9.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-entropy alloys (HEAs) are generally defined as solid solutions containing at least 5 constituent elements with concentrations between 5 and 35 atomic percent without the formation of intermetallic compounds. Currently, HEAs receive great attention as promising candidate materials for extreme environments due to their potentially desirable properties that result from their unique structural properties. In this review paper, we aim to introduce HEAs and explain their properties and related research by classifying them into three main categories, namely, mechanical properties, thermal properties, and electrochemical properties. Due to the high demand for structural materials in extreme environments, the mechanical properties of HEAs including strength, hardness, ductility, fatigue, and wear resistance are mainly described. Thermal and electrochemical properties, essential for the application of these alloys as structural materials, are also described.
        4,500원
        11.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, lanthanum oxide (La2O3) dispersed molybdenum (Mo–La2O3) alloys are fabricated using lanthanum nitrate solution and nanosized Mo particles produced by hydrogen reduction of molybdenum oxide. The effect of La2O3 dispersion in a Mo matrix on the fracture toughness at room temperature is demonstrated through the formation behavior of La2O3 from the precursor and three-point bending test using a single-edge notched bend specimen. The relative density of the Mo–0.3La2O3 specimen sintered by pressureless sintering is approximately 99%, and La2O3 with a size of hundreds of nanometers is uniformly distributed in the Mo matrix. It is also confirmed that the fracture toughness is 19.46 MPa·m1/2, an improvement of approximately 40% over the fracture toughness of 13.50 MPa·m1/2 on a pure-Mo specimen without La2O3, and this difference in the fracture toughness occurs because of the changes in fracture mode of the Mo matrix caused by the dispersion of La2O3.
        4,000원
        12.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Over the last decade, the next generation’s ultra-high-temperature materials as an alternative to Nickel-based superalloys have been highlighted. Ultra-high-temperature materials based on refractory metals are one of several potential candidates. In particular, molybdenum alloys with small amounts of silicon and boron (Mo-Si-B alloys) have superior properties at high temperature. However, research related to Mo-Si-B alloys were mainly conducted by several developed countries but garnered little interest in Korea. Therefore, in this review paper, we introduce the development history of Mo-Si-B alloys briefly and discuss the properties, particularly the mechanical and oxidation properties of Mo- Si-B alloys. We also introduce the latest research trends of Mo-Si-B alloys based on the research paper. Finally, for domestic research related to this field, we explain why Mo-Si-B alloys should be developed and suggest the potential directions for Mo-Si-B alloys research.
        4,000원
        13.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ni-based oxide dispersion strengthened (ODS) alloys have a higher usable temperature and better hightemperature mechanical properties than conventional superalloys. They are therefore being explored for applications in various fields such as those of aerospace and gas turbines. In general, ODS alloys are manufactured from alloy powders by mechanical alloying of element powders. However, our research team produces alloy powders in which the Ni5Y intermetallic phase is formed by an atomizing process. In this study, mechanical alloying was performed using a planetary mill to analyze the milling behavior of Ni-based oxide dispersions strengthened alloy powder in which the Ni5Y is the intermetallic phase. As the milling time increased, the Ni5Y intermetallic phase was refined. These results are confirmed by SEM and EPMA analysis on microstructure. In addition, it is confirmed that as the milling increased, the mechanical properties of Ni-based ODS alloy powder improve due to grain refinement by plastic deformation.
        4,000원
        14.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Molybdenum silicide has gained interest for high temperature structural applications. However, poor fracture toughness at room temperatures and low creep resistance at elevated temperatures have hindered its practical applications. This study uses a novel powder metallurgical approach applied to uniformly mixed molybdenum silicidebased composites with silicon carbide. The degree of powder mixing with different ball milling time is also demonstrated by Voronoi diagrams. Core-shell composite powder with Mo nanoparticles as the shell and β-SiC as the core is prepared via chemical vapor transport. Using this prepared core-shell composite powder, the molybdenum silicide-based composites with uniformly dispersed β-SiC are fabricated using pressureless sintering. The relative density of the specimens sintered at 1500oC for 10 h is 97.1%, which is similar to pressure sintering owing to improved sinterability using Mo nanoparticles.
        4,000원
        15.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The coupling of two semiconducting materials is an efficient method to improve photocatalytic activity via the suppression of recombination of electron-hole pairs. In particular, the coupling between two different phases of TiO2, i.e., anatase and rutile, is particularly attractive for photocatalytic activity improvement of rutile TiO2 because these coupled TiO2 powders can retain the benefits of TiO2, one of the best photocatalysts. In this study, anatase TiO2 nanoparticles are synthesized and coupled on the surface of rutile TiO2 powders using a microemulsion method and heat treatment. Triton X-100, as a surfactant, is used to suppress the aggregation of anatase TiO2 nanoparticles and disperse anatase TiO2 nanoparticles uniformly on the surface of rutile TiO2 powders. Rutile TiO2 powders coupled with anatase TiO2 nanoparticles are successfully prepared. Additionally, we compare the photocatalytic activity of these rutile-anatase coupled TiO2 powders under ultraviolet (UV) light and demonstrate that the reason for the improvement of photocatalytic activity is microstructural.
        4,000원
        16.
        2016.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For the development of a low-melting point filler metal for brazing aluminum alloy, we analyzed change of melting point and wettability with addition of Sn into Al-20Cu-10Si filler metal. DSC results showed that the addition of 5 wt% Sn into the Al-20Cu-10Si filler metal caused its liquidus temperature to decrease by about 30 oC. In the wettability test, spread area of melted Al-Cu-Si-Sn alloy is increased through the addition of Sn from 1 to 5 wt%. For the measuring of the mechanical properties of the joint region, Al 3003 plate is brazed by Al-20Cu-10Si-5Sn filler metal and the mechanical property is measured by tensile test. The results showed that the tensile strength of the joint region is higher than the tensile strength of Al 3003. Thus, failure occurred in the Al 3003 plate.
        4,000원
        17.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is performed to fabricate a Ti porous body by freeze drying process using titanium hydride (TiH2) powder and camphene. Then, the Ti porous body is employed to synthesize carbon nanotubes (CNTs) using thermal catalytic chemical vapor deposition (CCVD) with Fe catalyst and methane (CH4) gas to increase the specific surface area. The synthesized Ti porous body has 100 μm-sized macropores and 10-30 μm-sized micropores. The synthesized CNTs have random directions and are entangled with adjacent CNTs. The CNTs have a bamboo-like structure, and their average diameter is about 50 nm. The Fe nano-particles observed at the tip of the CNTs indicate that the tip growth model is applicable. The specific surface area of the CNT-coated Ti porous body is about 20 times larger than that of the raw Ti porous body. These CNT-coated Ti porous bodies are expected to be used as filters or catalyst supports.
        4,000원
        19.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, titanium(Ti) meshes and porous bodies are employed to synthesize carbon nanotubes(CNTs) using methane(CH4) gas and camphene solution, respectively, by chemical vapor deposition. Camphene is impregnated into Ti porous bodies prior to heating in a furnace. Various microscopic and spectroscopic techniques are utilized to analyze CNTs. It is found that CNTs are more densely and homogeneously populated on the camphene impregnated Ti-porous bodies as compared to CNTs synthesized with methane on Ti-porous bodies. It is elucidated that, when synthesized with methane, few CNTs are formed inside of Ti porous bodies due to methane supply limited by internal structures of Ti porous bodies. Ti-meshes and porous bodies are found to be multi-walled with high degree of structural disorders. These CNTs are expected to be utilized as catalyst supports in catalytic filters and purification systems.
        4,000원
        1 2