논문 상세보기

Microstructure and Characterization of Ni-C Films Fabricated by Dual-Source Deposition System KCI 등재 SCOPUS

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/315623
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국재료학회지 (Korean Journal of Materials Research)
한국재료학회 (Materials Research Society Of Korea)
초록

Ni-C composite films were prepared by co-deposition using a combined technique of plasma CVD and ion beam sputtering deposition. Depending on the deposition conditions, Ni-C thin films manifested three kinds of microstructure: (1) nanocrystallites of non-equilibrium carbide of nickel, (2) amorphous Ni-C film, and (3) granular Ni-C film. The electrical resistivity was also found to vary from about 102 μΩcm for the carbide films to about 104 μΩcm for the amorphous Ni-C films. The Ni-C films deposited at ambient temperatures showed very low TCR values compared with that of metallic nickel film, and all the films showed ohmic characterization, even those in the amorphous state with very high resistivity. The TCR value decreased slightly with increasing of the flow rate of CH4. For the films deposited at 200 oC, TCR decreased with increasing CH4 flow rate; especially, it changed sign from positive to negative at a CH4 flow rate of 0.35 sccm. By increasing the CH4 flow rate, the amorphous component in the film increased; thus, the portion of Ni3C grains separated from each other became larger, and the contribution to electrical conductivity due to thermally activated tunneling became dominant. This also accounts for the sign change of TCR when the filme was deposited at higher flow rate of CH4. The microstructures of the Ni-C films deposited in these ways range from amorphous Ni-C alloy to granular structures with Ni3C nanocrystallites. These films are characterized by high resistivity and low TCR values; the electrical properties can be adjusted over a wide range by controlling the microstructures and compositions of the films.

목차
1. Introduction
 2. Experimental Procedure
 3. Results and Discussion
  3.1 Microstructures of Ni-C films
  3.2 Electrical properties of Ni-C films
 4. Conclusions
 Acknowledgements
 References
저자
  • Chang-Suk Han(Department of Defense Science & Technology, Hoseo University)
  • Sang-Wook Kim(Department of Nanobiotronics, Hoseo University Hoseo-ro 79 beon-gil, Baebang-myun, Asan City, Chungnam 31499, Republic of Korea)