검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2013.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of a sputter deposition sequence of Cu, Zn, and Sn metal layers on the properties of Cu2ZnSnS4 (CZTS) was systematically studied for solar cell applications. The set of Cu/Sn/Zn/Cu multi metal films was deposited on a Mo/SiO2/Si wafer using dc sputtering. CZTS films were prepared through a sulfurization process of the Cu/Sn/Zn/Cu metal layers at 500˚C in a H2S gas environment. H2S (0.1%) gas of 200 standard cubic centimeters per minute was supplied in the cold-wall sulfurization reactor. The metal film prepared by one-cycle deposition of Cu(360 nm)/Sn(400 nm)/Zn(400 nm)/Cu(440 nm) had a relatively rough surface due to a well-developed columnar structure growth. A dense and smooth metal surface was achieved for two- or three-cycle deposition of Cu/Sn/Zn/Cu, in which each metal layer thickness was decreased to 200 nm. Moreover, the three-cycle deposition sample showed the best CZTS kesterite structures after 5 hr sulfurization treatment. The two- and three-cycle Cu/Sn/Zn/Cu samples showed high-efficient photoluminescence (PL) spectra after a 3 hr sulfurization treatment, wheres the one-cycle sample yielded poor PL efficiency. The PL spectra of the three-cycle sample showed a broad peak in the range of 700-1000 nm, peaked at 870 nm (1.425 eV). This result is in good agreement with the reported bandgap energy of CZTS.
        4,000원