Effect of Adding SiO2 and Al2O3 on Mechanical Properties of Zircon
Zircon has excellent thermal, chemical, and mechanical properties, but it is hard to make a dense sintered product because of dissociation during the sintering process. This study analyzes how the addition of SiO2 and Al2O3 affects the mechanical properties of sintered zircon, particularly in regards to reducing the thermal dissociation and improving the mechanical properties of ZrSiO4. Zircon specimens containing different amounts of SiO2 and Al2O3 were prepared and sintered to observe how the mechanical properties of ZrSiO4 changed according to the differing amount of SiO2 and Al2O3. The ZrSiO4 that was used for the starting material was ground by ball mill to an average particle size of 3 μm. The SiO2 and Al2O3 that was used for additives were ground to an average particle size of 3 μm and 0.5 μm, respectively. Adding SiO2 resulted in transformation in the liquid phase at high temperatures, which had little effect on suppressing the thermal dissociation but enhanced the mechanical properties of ZrSiO4. When Al2O3 was added, the mechanical properties of ZrSiO4 decreased due to the formation of pores and abnormal grains in the microstructure of the sintered zircon.