검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2016.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        IgG4-SC는 type 1 AIP의 가장 흔한 췌장 외 발현으로 type 1 AIP 환자의 약 70%에서 발생하는 것으로 보고되었고 드물게 단독으로 발생하기도 한다. IgG4-SC의 진단은 임상적으 로 매우 중요한데, 이는 영상 소견상 담관암과의 감별이 어렵기 때문이다. IgG4-SC의 경우, 스테로이드 투여로 회복될 수 있다는 점에서 그 의의가 크다.
        4,000원
        2.
        2013.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Activated magnetite (Fe3O4-δ) has the capability of decomposing CO2 proportional to the δ-value at comparativelylow temperature of 300oC. To enhance the CO2 decomposition capability of Fe3O4-δ, (Fe1-xCox)3O4-δ and (Fe1-xMnx)3O4-δ weresynthesized and then reacted with CO2. Fe1-xCoxC2O4·2H2O powders having Fe to Co mixing ratios of 9:1, 8:2, 7:3, 6:4, and5:5 were synthesized by co-precipitation of FeSO4·7H2O and CoSO4·7H2O solutions with a (NH4)2C2O4·H2O solution. The samemethod was used to synthesize Fe1-xMnxC2O4·2H2O powders having Fe to Mn mixing ratios of 9:1, 8:2, 7:3, 6:4, 5:5 with aMnSO4·4H2O solution. The thermal decomposition of synthesized Fe1-xCoxC2O4·2H2O and Fe1-xMnxC2O4·2H2O was analyzedin an Ar atmosphere with TG/DTA. The synthesized powders were heat-treated for 3 hours in an Ar atmosphere at 450oCto produce activated powders of (Fe1-xCox)3O4-δ and (Fe1-xMnx)3O4-δ. The activated powders were reacted with a mixed gas(Ar:85%, CO2:15%) at 300oC for 12 hours. The exhaust gas was analyzed for CO2 with a CO2 gas analyzer. The decom-position of CO2 was estimated by measuring CO2 content in the exhaust gas after the reaction with CO2. For (Fe1-xMnx)3O4-δ,the amount of Mn2+ oxidized to Mn3+ increased as x increased. The δ value and CO2 decomposition efficiency decreased asx increased. When the δ value was below 0.641, CO2 was not decomposed. For (Fe1-xCox)3O4-δ, the δ value and CO2decomposition efficiency increased as x increased. At a δ value of 0.857, an active state was maintained even after 12 hoursof reaction and the amount of decomposed CO2 was 52.844cm3 per 1g of (Fe0.5Co0.5)3O4-δ.
        4,000원
        3.
        2012.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A general synthetic method to make Fe3O4-δ (activated magnetite) is the reduction of Fe3O4 by H2 atmosphere. However, this process has an explosion risk. Therefore, we studied the process of synthesis of Fe3O4-δ depending on heat-treatment conditions using FeC2O4·2H2O in Ar atmosphere. The thermal decomposition characteristics of FeC2O4·2H2O and the δ-value of Fe3O4-δ were analyzed with TG/DTA in Ar atmosphere. β-FeC2O4·2H2O was synthesized by precipitation method using FeSO4·7H2O and (NH4)2C2O4·H2O. The concentration of the solution was 0.1 M and the equivalent ratio was 1.0. β-FeC2O4·2H2O was decomposed to H2O and FeC2O4 from 150˚C to 200˚C. FeC2O4 was decomposed to CO, CO2, and Fe3O4 from 200˚C to 250˚C. Single phase Fe3O4 was formed by the decomposition of β-FeC2O4·2H2O in Ar atmosphere. However, Fe3C, Fe and Fe4N were formed as minor phases when β-FeC2O4·2H2O was decomposed in N2 atmosphere. Then, Fe3O4 was reduced to Fe3O4-δ by decomposion of CO. The reduction of Fe3O4 to Fe3O4-δ progressed from 320˚C to 400˚C; the reaction was exothermic. The degree of exothermal reaction was varied with heat treatment temperature, heating rate, Ar flow rate, and holding time. The δ-value of Fe3O4-δ was greatly influenced by the heat treatment temperature and the heating rate. However, Ar flow rate and holding time had a minor effect on δ-value.
        4,000원
        4.
        2012.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Activated magnetite (Fe3O4-δ) was applied to reducing CO2 gas emissions to avoid greenhouse effects. Wet and dry methods were developed as a CO2 removal process. One of the typical dry methods is CO2 decomposition using activated magnetite (Fe3O4-δ). Generally, Fe3O4-δ is manufactured by reduction of Fe3O4 by H2 gas. This process has an explosion risk. Therefore, a non-explosive process to make Fe3O4-δ was studied using FeC2O4·2H2O and N2. FeSO4·7H2O and (NH4)2C2O4·H2O were used as starting materials. So, α-FeC2O4·2H2O was synthesized by precipitation method. During the calcination process, FeC2O4·2H2O was decomposed to Fe3O4, CO, and CO2. The specific surface area of the activated magnetite varied with the calcination temperature from 15.43 m2/g to 9.32 m2/g. The densities of FeC2O4·2H2O and Fe3O4 were 2.28 g/cm3 and 5.2 g/cm3, respectively. Also, the Fe3O4 was reduced to Fe3O4-δ by CO. From the TGA results in air of the specimen that was calcined at 450˚C for three hours in N2 atmosphere, the δ-value of Fe3O4-δ was estimated. The δ-value of Fe3O4-δ was 0.3170 when the sample was heat treated at 400˚C for 3 hours and 0.6583 when the sample was heat treated at 450˚C for 3 hours. Fe3O4-δ was oxidized to Fe3O4 when Fe3O4-δ was reacted with CO2 because CO2 is decomposed to C and O2.
        4,000원
        5.
        2012.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        상록활엽수인 가시나무와 낙엽활엽수인 상수리나무 낙엽의 분해율 및 분해과정에 따른 영양염류의 함량 변화를 파악하기 위해 2008년 12월 공주의 상수리나무군락에 낙엽주머니를 설치하고 2009년 3월부터 2010년 12월까지 3개월 간격으로 낙엽주머니를 수거하여 분해율, 분해상수(k), 그리고 분해과정에 따른 C/N비, C/P비의 변화와 영양염류의 동태를 조사하였다. 24개월경과 후 상수리나무 낙엽과 가시나무 낙엽의 잔존률은 각각 46.3±5.4%와 37.8±2.5%로 가시나무 낙엽의 분해가 상수리나무 낙엽의 분해보다 빠르게 진행되는 것으로 나타났다. 24개월경과 후 상수리나무 낙엽과 가시나무 낙엽의 분해상수(k)는 각각 0.38과 0.49로 가시나무 낙엽의 분해상수가 높게 나타났다. 상수리나무 낙엽의 분해과정에 따른 C/N. C/P 비율은 초기에 각각 46.8, 270.9 이었으나 24개월경과 후에는 각각 22.5와 104.2로 점차 감소하였으며, 가시나무 낙엽의 경우 초기 C/N, C/P 비율은 각각 22.4와 41.7로 나타났고, 24개월경과 후에는 각각 16.7와 89.9로 나타났다. 낙엽의 초기 N, P, K, Ca, Mg 함량은 상수리나무 낙엽에서 각각 8.31, 0.44, 4.18, 9.38, 1.37 mg/g, 가시나무 낙엽에서 각각 19.88, 2.73, 7.06, 8.24, 2.61 mg/g으로 가시나무 낙엽의 질소와 인의 함량이 상수리나무 낙엽에 비해 현저히 높았다. 24개월경과 후 N, P, K, Ca, Mg의 잔존률은 상수리나무 낙엽에서 각각 100.91, 114.75, 32.99, 50.63, 15.51% 이었고, 가시나무 낙엽에서 각각 43.22, 11.35, 12.98, 82.22, 44.23% 로 조사기간 동안에 상수리나무 낙엽에서는 질소와 인의 부동화가, 가시나무 낙엽에서는 질소와 인의 무기화가 진행되었다.
        4,000원
        6.
        2011.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of the precipitator (NaOH, NH4OH) and the amount of the precipitator (150, 200, 250, 300 ml) on the formation of Fe3(PO4)2, which is the precursor used for cathode material LiFePO4 in Li-ion rechargeable batteries was investigated by the co-precipitation method. A pure precursor of olivine LiFePO4 was successfully prepared with coprecipitation from an aqueous solution containing trivalent iron ions. The acid solution was prepared by mixing 150 ml FeSO4(1M) and 100 ml H3PO4(1M). The concentration of the NaOH and NH4OH solution was 1 M. The reaction temperature (25˚C) and reaction time (30 min) were fixed. Nitrogen gas (500 ml/min) was flowed during the reaction to prevent oxidation of Fe2+. Single phase Fe3(PO4)2 was formed when 150, 200, 250 and 300 ml NaOH solutions were added and 150, 200 ml NH4OH solutions were added. However, Fe3(PO4)2 and NH4FePO4 were formed when 250 and 300 ml NH4OH was added. The morphology of the Fe3(PO4)2 changed according to the pH. Plate-like lenticular shaped Fe3(PO4)2 formed in the acidic solution below pH 5 and plate-like rhombus shaped Fe3(PO4)2 formed around pH 9. For the NH4OH, the pH value after 30 min reaction was higher with the same amount of additions of NaOH and NH4OH. It is believed that the formation mechanism of Fe3(PO4)2 is quite different between NaOH and NH4OH. Further investigation on this mechanism is needed. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the pH value was measured by pH-Meter.
        4,000원
        7.
        2011.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of ferrous/ferric molar ratio on the formation of nano-sized magnetite particles was investigated by a co-precipitation method. Ferrous sulfate and ferric sulfate were used as iron sources and sodium hydroxide was used as a precipitant. In this experiment, the variables were the ferrous/ferric molar ratio (1.0, 1.25, 2.5 and 5.0) and the equivalent ratio (0.10, 0.25, 0.50, 0.75, 1.0, 2.0 and 3.0), while the reaction temperature (25˚C) and reaction time (30 min.) were fixed. Argon gas was flowed during the reactions to prevent the Fe2+ from oxidizing in the air. Single-phase magnetite was synthesized when the equivalent ratio was above 2.0 with the ferrous/ferric molar ratios. However, goethite and magnetite were synthesized when the equivalent ratio was 1.0. The crystallinity of magnetite increased as the equivalent ratio increased up to 3.0. The crystallite size (5.6 to 11.6 nm), median particle size (15.4 to 19.5 nm), and saturation magnetization (43 to 71 emu.g-1) changed depending on the ferrous/ferric molar ratio. The highest saturation magnetization (71 emu.g-1) was obtained when the equivalent ratio was 3.0 and the ferrous/ferric molar ratio was 2.5.
        4,000원
        8.
        2014.10 서비스 종료(열람 제한)
        These days System supports are generally used at the construction sites. But the Structural capacity and Stability of the System Supports are not reviewed properly. The structural capacity of System Support should be evaluated by considering unbraced buckling length.
        9.
        2011.11 KCI 등재 서비스 종료(열람 제한)
        고력볼트 길이-직경비가 5d 이상인 경우, 시험을 통한 결과를 활용하여 현장에서 볼트 체결을 하도록 권고하고 있을뿐 길이-직경비에 따른 별도의 규정 및 지침은 없다. 국내에서는 고력볼트 체결법으로 너트회전법이 아닌 토크관리법이 적용하고 있고 최근에는 KS B 2819의 ‘구조물용 토크-전단형 고장력 볼트’(이하, TS 고력볼트)가 주로 사용되고 있기 때문에 길이 인자에 따른 규정이 국외 기준에 비해 미비한 것이 현실이다. 따라서, 본 논문에서는 TS 고력볼트의 길이인자에 따른 적정 축력 도입을 위한 소요 너트회전각 및 토크를 분석하여 길이변수에 따른 특성을 평가하고자 한다. 실험결과의 분석에서는 통계분석 프로그램 Minitab을 활용하여 길이변수에 대한 유효성을 정량적으로 분석했다.