도로분야와 관련된 기준에서 도로법, 도로의 구조·시설 기준에 관한 규칙, 도로 건설기준(KDS/KCS 44 00 00) 등 관련 법령을 근거로 제정된 기준은 상위기술기준으로 분류되며 그 외 지침, 편람, 매뉴얼, 가이드라인 등은 하위기술기준으로 구분된다. 상위기술기준은 도 로법, 건설기술진흥법 등을 근거로 제정되어 활용되고 있으나, 지침, 편람, 가이드라인 등으로 분류되는 하위기술기준은 소관부서에서 주관하여 필요한 상황에 따라 제정하여 현장에서 활용되고 있다. 법령을 근거로 하는 상위기술기준은 국가건설기준센터, 소관부서 등 에 의해 지속적으로 관리되고 있는 반면에 하위기술기준은 제정 당시 시점의 상위기술기준을 준용하여 제정 후 현행화 등의 후속 관 리가 체계적으로 수행되고 있지 않아 현행 상위기술기준과의 연계성이 떨어지고, 상충되는 문제가 야기되고 있다. 본 연구에서는 현재 까지 발행, 고시 또는 배포된 도로분야의 하위기술기준의 관리를 위한 현황 조사와 함께 전문가 검토를 통한 하위기술기준의 활용성 을 확보하기 위한 방안을 모색하기 위한 기초자료를 마련하고자 하였다. 도로분야 하위기술기준에 대한 현황 조사를 수행한 결과에서 는 현재 150여 개의 하위기술기준이 배포된 것으로 파악되었다. 조사 결과를 바탕으로 도로분야 설계 및 도로 시공 분야 전문가 검토 를 통해 현장에서의 활용 가치가 있는 하위기술기준은 존치하는 방향으로, 현행 상위기술기준과의 연계성, 현장 활용도가 떨어지는 하 위기술기준은 폐지하는 방향으로 분석하여 도로분야 하위기술기준의 현장 활용성 확보를 위한 자료를 마련하였다.
Habitat environment and food sources of fish, benthic macroinvertebrates, and brown trout (Salmo trutta) downstream of Soyang River Dam were analyzed. Water temperature at the site where brown trout was identified ranged from approximately 12.4 to 13.4°C, confirming that this environment could provide an optimal water temperature for the growth of brown trout. Most of the riverbed structures at this site had a high proportion of cobble and pebble substrates. Brown trout constituted less than 5% of the total fish population, more abundant in the upstream. The total lengthweight relationship of brown trout showed a parameter b value of 3.234, with the condition factor (K) increasing with length. Dominant benthic macroinvertebrates were Limnodrilus gotoi and Chironomidae spp. (non-red type). Stomach content analysis indicated that brown trout primarily consumed aquatic insects (R.A., 73.8%), non-insects (R.A., 23.3%), ground insects (R.A., 2.7%), and fish (R.A., 0.2%, TL: 246 mm). Correlation analysis revealed a positive relationship between total length and species preferring flowing water (p<0.05) and a negative relationship of total length with species favoring low-flow, sandy habitats (p<0.05). Larger brown trout showed active feeding behavior and resilience to flow speed and riverbed structure. The primary food source for the largest brown trout (TL: 246 mm) was Hypomesus nipponensis. Future analyses should include brown trout with a total length of 30 cm or more. Given that samples were limited, comprehensive population management will require ongoing research.
This study conducted field surveys targeting benthic macroinvertebrates and fish in Andong Dam and Yeongsan River, with the specific aim of analyzing bluegill stomach contents. Bluegills in Andong Dam ranged from 40-220 mm, with 93.0% between 80-220 mm, while those in Yeongsan River ranged from 50-210 mm, with 71.4% between 120-210 mm. The highest feeding rates in both sites were for Chironomidae spp., with findings of 72.6% in Andong Dam and 80.4% in Yeongsan River. In Andong Dam, H. nipponensis and Baetidae sp. were also significant at 17.5% and 6.5%, respectively, while in Yeongsan River, Baetidae sp. (7.5%) and Hymenoptera sp. were the next most common at 3.8%. The EI index showed that bluegills generally avoided H. nipponensis and S. tsuchigae (-0.373 and -0.975) whereas they preferred Chironomidae spp. (0.759, 0.892) and Baetidae sp. (0.723). The parameter b values of the total length-weight relationship of bluegill were calculated as 3.452 in Andong Dam and 3.449 in the Yeongsan River, respectively. The slope values of the condition factor were 0.0067 in Andong Dam and 0.0065 in the Yeongsan River. Both values were positive, indicating that the nutritional status of bluegill was good. Aquatic insects constituted the primary food source, particularly in Yeongsan River. Feeding patterns did not significantly differ by habitat orientation groups, but Yeongsan River bluegills consumed more diverse food sources. In Andong Dam, larger bluegills likely consume food sources with larger biomass, while Yeongsan River’s diverse and abundant food sources support opportunistic feeding tailored to the water ecological environment.
본 연구는 충북 청주시 소재 C대학교 인근 커피숍의 외부 및 내부사용 접근성 실태를 시설의 접근과 이 동에 있어서 약자로 간주되는 수동 휠체어 사용자 관점에서 평가하여 개선 방안을 제안하고 접근성 실 태를 시각적으로 확인할 수 있도록 돕는 접근성맵 제작하는 것을 목적으로 진행되었다. C대학교 인근 4개 동의 115개 커피숍을 대상으로 2024년 3월부터 5월까지 자체 제작한 체크리스트를 이용하여 현장 조사를 실시하였으며, 그 결과를 바탕으로 각 동별 커피숍 접근성맵을 제작하였다. 주요 결과와 적용점 은 다음과 같다. 첫째, 113개 진입형 및 혼합형 매장 중 수동휠체어 사용자의 자력진입과 내부 자력주행 및 사용이 모두 가능한 매장은 15.0%에 불과한 반면 수동휠체어 사용자의 자력진입이 불가능하거나 자력 내부 주행 및 사용이 불가능한 매장은 75.2%로 나타났다. 둘째, 비진입형 및 혼합형 커피숍 11개소 의 경우 수동휠체어 사용자의 자력 주문 및 대기가 가능한 매장은 단 한 개소도 나타나지 않았으며, 수동 휠체어 사용자의 주문과 대기가 불가능한 경우가 54.5%였다. 셋째, 충족률이 저조한 항목 중 가장 빈번 한 항목은 계산대나 키오스크 등의 무릎공간 확보였다.
이 연구는 통합기술수용이론(UTAUT)을 확장한 UTAUT2 모델을 활용 하여 치의학과 학생들의 UBT 수용의도에 영향을 미치는 요인을 분석하 고, 성별에 따른 조절효과를 검토하였다. 이를 위해 한 국립대학교 치의 학과 졸업시험에 응시한 학생 157명을 대상으로 설문조사를 실시하였다. 설문조사는 연구참여자의 성별, 나이, 입학 유형, 태블릿 PC 보유 여부, 스마트기기 활용 능력 등 인구통계학적 정보와 스마트기기 사용 경험, 그리고 UTAUT2 모델에 기반한 성과기대, 노력기대, 사회적 영향, 촉진 조건, 습관 등 요인과 UBT 수용의도를 평가하는 21개의 문항 등 총 27 개의 문항을 활용하였다. 설문조사 분석 결과에 따르면 사회적 영향과 습관 요인이 치의학과 학생들의 UBT 수용의도에 유의미한 영향을 미쳤 으며, 습관 요인과 UBT 수용의도간 관계에 대한 성별의 조절효과가 확 인되었다. 이러한 결과를 바탕으로 UBT 도입을 촉진하기 위해 학생들의 긍정적인 인식을 높이는 홍보 활동, 정기적인 연습 기회 제공, 성별 맞춤 형 접근, 기술적 지원과 자원 제공 등의 전략을 제안하였다.
PURPOSES : Construction standards have resolved overlaps and conflicts between different standards and fields through the introduction of a code system. However, the sub-technical standards were established based on the construction standards at the time of their creation and have not been revised. This has resulted in poor integration and conflicts with revised construction standards, reducing their practical applicability in the construction field. Consequently, to enhance the practical applicability of sub-technical standards and ensure their integration with construction standards, this study aimed to devise technical guidelines for sub-technical standards. METHODS : A brainstorming session was conducted with field experts to evaluate the applicability and necessity of the currently distributed sub-technical standards in the field. Each sub-technical standard was reviewed to determine whether it should be retained or abolished. On the basis of the review results, this study developed a set of draft technical guidelines (Korean Design Standard Guideline (KDSG)/Korean Construction Specification Guideline (KCSG)) for the sub-technical standards that required retention. RESULTS : A comprehensive survey of sub-technical standards identified a total of 154 standards. Of these, 109 were deemed necessary to retain, whereas 45 were considered unnecessary to retain. Among the sub-technical standards requiring retention, 20 were selected for the development of technical guidelines based on their relevance and applicability to the construction standards. A draft of these technical guidelines was subsequently prepared. CONCLUSIONS : A plan was devised to assign technical guideline codes to 20 subordinate technical standards that were deemed consistent with the road construction standards (KDS/KCS 44 00 00). This approach can provide a foundation for reorganizing the system of road construction standards and subordinate technical standards, thereby enhancing their practical usability in the construction field.
PURPOSES : The skid resistance between tires and the pavement surface is an important factor that directly affects driving safety and must be considered when evaluating the road performance. In especially wet conditions, the skid resistance of the pavement surface decreases considerably, increasing the risk of accidents. Moreover, poor drainage can lead to hydroplaning. This study aimed to develop a prediction equation for the roughness coefficient—that is, an index of frictional resistance at the interface of the water flow and surface material—to estimate the thickness of the water film in advance to prevent human and material damage. METHODS : The roughness coefficient can be changed depending on the surface material and can be calculated using Manning's theory. Here, the water level (h), which is included in the cross-sectional area and wetted perimeter calculations, can be used to calculate the roughness coefficient by using the water film thickness measurements generated after simulating specific rainfall conditions. In this study, the pavement slope, drainage path length, and mean texture depth for each concrete surface type (non-tined, and tined surfaces with 25-mm and 16-mm spacings) were used as variables. A water film thickness scale was manufactured and used to measure the water film thickness by placing it vertically on top of the pavement surface along the length of the scale protrusion. Based on the measured water film thickness, the roughness coefficient could be back-calculated by applying Manning's formula. A regression analysis was then performed to develop a prediction equation for the roughness coefficient based on the water film thickness data using the water film thickness, mean texture depth, pavement slope, and drainage path length as independent variables. RESULTS : To calculate the roughness coefficient, the results of the water film thickness measurements using rainfall simulations demonstrated that the water film thickness increased as the rainfall intensity increased under N/T, T25, and T16 conditions. Moreover, the water film thickness decreased owing to the linear increase in drainage capacity as the mean texture depth and pavement slope increased, and the shorter the drainage path length, the faster the drainage, resulting in a low water film thickness. Based on the measured water film thickness data, the roughness coefficient was calculated, and it was evident that the roughness coefficient decreased as the rainfall intensity increased. Moreover, the higher the pavement slope and the shorter the drainage path length, the faster the drainage reduced the water film thickness and increased the roughness coefficient (which is an indicator of the friction resistance). It was also evident that as the mean texture depth increased, the drainage capacity increased, which also reduced the roughness coefficient. CONCLUSIONS : As the roughness coefficient of the concrete road surface changes based on the environmental factors, road geometry, and pavement surface characteristics, we developed a prediction equation for the concrete pavement roughness coefficient that considered these factors. To validate the proposed prediction equation, a sensitivity analysis was conducted using the water film thickness prediction equation from previous studies. Existing models have limitations on the impact of the pavement type and rainfall intensity and can be biased toward underestimation; in contrast, the proposed model demonstrated a high correlation between the calculated and measured values. The water film thickness was calculated based on the road design standards in Korea—in the order of normal, caution, and danger scenarios—by using the proposed concrete pavement roughness coefficient prediction model under rainy weather conditions. Specifically, because the normal and caution stages occur before the manifestation of hydroplaning, it should be possible to prevent damage before it leads to the danger stage if it is predicted and managed in advance.
PURPOSES : The tire-pavement interaction noise (TPIN) comprises four sources, among which the tire tread vibration noise (TTVN) and air pumping noise (APN) are known to be the most influential. However, when evaluating TPIN, the noise level is estimated based on the overall noise, because general noise measurement methods cannot separate TTVN and APN. Therefore, this study aims to develop a method to separate TTVN and APN in TPIN for quantitative assessment of pavement noise. METHODS : Based on the results of our literature review and frequency band noise data measured in our study, we identified the dominant frequency ranges for TTVN and APN. Additionally, we evaluated TTVN and APN across various pavement types. RESULTS : TTVN was found to be dominant in frequency bands below 800 Hz, while APN was dominant in frequency bands above 800 Hz. Additionally, regardless of the vehicle type, vehicle speed, or pavement type, APN exhibited higher levels compared to TTVN. This result shows that APN has a more significant impact on TPIN than TTVN. CONCLUSIONS : The separation method of TTVN and APN proposed in this study can be utilized to quantitatively assess the relationship between the primary noise sources in TPIN and the characteristics of pavement texture in future research. Furthermore, it is anticipated that characteristics of low TPIN and optimal texture conditions can be proposed to mitigate TPIN, thus contributing to the development of lownoise pavements.
PURPOSES : Recently, air pollution due to fine particulate matter has been increasing in Korea. Nitrogen oxides (NOx) are particulate matter precursors significantly contributing to air pollution. Increasing efforts have been dedicated to NOx removal from air, since it is particularly harmful. Application of titanium dioxide (TiO2) for concrete road structures is a suitable alternative to remove NOx. As the photocatalytic reaction of TiO2 is the mechanism that eliminates NOx, the ultraviolet rays in sunlight and TiO2 in existing concrete structures need to be contacted for the reaction process. For the application of vertical concrete road structures such as retaining walls, side ditches, and barriers, a pressurized TiO2 fixation method has been developed considering the pressure and pressurization time. In this study, longterm serviceability and repeatability were investigated on concrete specimens applying the dynamic pressurized TiO2 fixation method. Additionally, the environmental hazards of nitrate adsorbed on TiO2 particles were evaluated. METHODS : Concrete specimens to simulate roadside vertical concrete structures were manufactured and used to evaluate the long-term serviceability and repeatability of the dynamic pressurized TiO2 fixation method. The NOx removal efficiency was measured using NOx evaluation equipment based on ISO 22197-1. In addition, the nitrate concentration was measured using a comprehensive water quality analyzer for evaluating environmental hazards. RESULTS : As the experiment to evaluate the NOx removal efficiency of the dynamic pressurized TiO2 fixation method progressed from one to seven cycles, the nitrate concentration increased from 2.35 mg/L to 3.06 mg/L, and the NOx removal efficiency decreased from 53% to 25%. After seven cycles of NOx removal efficiency evaluation, the average nitrate concentration was 3.06 mg/L. The nitrate concentration collected immediately after the NOx removal efficiency test for each cycle was in the range of 2.51 to 2.57 mg/L. By contrast, it was confirmed that the nitrate concentration was lowered to approximately 2.1 mg/L when the surface was washed with water. CONCLUSIONS : The NOx removal efficiency was maintained at over 25% even after seven cycles of NOx removal efficiency evaluation, securing long-term serviceability. In addition, the harmful effects on the environment and human health are insignificant, since the nitrate concentration was less than 10 mg/L, in accordance with domestic and foreign standards. Practical applicability of the pressurized TiO2 fixation method was established by evaluating the long-term serviceability, repeatability, and environmental hazards.
New motor development requires high-speed load testing using dynamo equipment to calculate the efficiency of the motor. Abnormal noise and vibration may occur in the test equipment rotating at high speed due to misalignment of the connecting shaft or looseness of the fixation, which may lead to safety accidents. In this study, three single-axis vibration sensors for X, Y, and Z axes were attached on the surface of the test motor to measure the vibration value of vibration. Analog data collected from these sensors was used in classification models for anomaly detection. Since the classification accuracy was around only 93%, commonly used hyperparameter optimization techniques such as Grid search, Random search, and Bayesian Optimization were applied to increase accuracy. In addition, Response Surface Method based on Design of Experiment was also used for hyperparameter optimization. However, it was found that there were limits to improving accuracy with these methods. The reason is that the sampling data from an analog signal does not reflect the patterns hidden in the signal. Therefore, in order to find pattern information of the sampling data, we obtained descriptive statistics such as mean, variance, skewness, kurtosis, and percentiles of the analog data, and applied them to the classification models. Classification models using descriptive statistics showed excellent performance improvement. The developed model can be used as a monitoring system that detects abnormal conditions of the motor test.
PURPOSES : Pavement surface friction depends significantly on pavement surface texture characteristics. The mean texture depth (MTD), which is an index representing pavement surface texture characteristics, is typically used to predict pavement surface friction. However, the MTD may not be sufficient to represent the texture characteristics to predict friction. To enhance the prediction of pavement surface friction, one must select additional variables that can explain complex pavement surface textures. METHODS : In this study, pavement surface texture characteristics that affect pavement surface friction were analyzed based on the friction mechanism. The wavelength, pavement surface texture shape, and pavement texture depth were hypothesized to significantly affect the surface friction of pavement. To verify this, the effects of the three abovementioned pavement surface texture characteristics on pavement surface friction must be investigated. However, because the surface texture of actual pavements is irregular, examining the individual effects of these characteristics is difficult. To achieve this goal, the selected pavement surface texture characteristics were formed quantitatively, and the irregularities of the actual pavement surface texture were improved by artificially forming the pavement surface texture using threedimensionally printed specimens. To reflect the pavement surface texture characteristics in the specimen, the MTD was set as the pavement surface texture depth, and the exposed aggregate number (EAN) was set as a variable. Additionally, the aggregate shape was controlled to reflect the characteristics of the pavement surface texture of the specimen. Subsequently, a shape index was proposed and implemented in a statistical analysis to investigate its effect on pavement friction. The pavement surface friction was measured via the British pendulum test, which enables measurement to be performed in narrow areas, considering the limited size of the three-dimensionally printed specimens. On wet pavement surfaces, the pavement surface friction reduced significantly because of the water film, which intensified the effect of the pavement surface texture. Therefore, the pavement surface friction was measured under wet conditions. Accordingly, a BPN (wet) prediction model was proposed by statistically analyzing the relationship among the MTD, EAN, aggregate shape, and BPN (wet). RESULTS : Pavement surface friction is affected by adhesion and hysteresis, with hysteresis being the predominant factor under wet conditions. Because hysteresis is caused by the deformation of rubber, pavement surface friction can be secured through the formation of a pavement surface texture that causes rubber deformation. Hysteresis occurs through the function of macro-textures among pavement surface textures, and the effects of macro-texture factors such as the EAN, MTD, and aggregate shape on the BPN (wet) are as follows: 1) The MTD ranges set in this study are 0.8, 1.0, and 1.2, and under the experimental conditions, the BPN (wet) increases linearly with the MTD. 2) An optimum EAN is indicated when the BPN (wet) is the maximum, and the BPN decreases after its maximum value is attained. This may be because when the EAN increases excessively, the space for the rubber to penetrate decreases, thereby reducing the hysteresis. 3) The shape of the aggregate is closely related to the EAN; meanwhile, the maximum value of the pavement surface friction and the optimum EAN change depending on the aggregate shape. This is believed to be due to changes in the rubber penetration volume based on the aggregate shape. Based on the results above, a statistical prediction model for the BPN (wet) is proposed using the MTD, EAN, and shape index as variables. CONCLUSIONS : The EAN, MTD, and aggregate shape are crucial factors in predicting skid resistance. Notably, the EAN and aggregate shape, which are not incorporated into existing pavement surface friction prediction models, affect the pavement surface friction. However, the texture of the specimen created via three-dimensional printing differs significantly from the actual pavement surface texture. Therefore, the pavement surface friction prediction model proposed in this study should be supplemented with comparisons with actual pavement surface data in the future.
PURPOSES : Roller-compacted concrete pavement (RCCP) is a superstiff-consistency concrete pavement that exhibits excellent strength development owing to a hydration reaction and interlocking aggregates owing to the roller compaction. A zero-slump concrete mixture is generally used. Hence, it is important to control the consistency of the RCCP mixture to prevent the deterioration of the construction quality (such as material separation during paving). The workability of the RCCP is characterized by its consistency and controlled by the Vebe time, whereas a conventional concrete pavement is controlled based on the slump test. The consistency of the RCCP changes over time after concrete mixing owing to delivery, construction time delays, etc. Thus, it is necessary to use the optimum Vebe time to achieve the best construction quality. Therefore, this study aims to develop a Vebe time prediction model for efficiently controlling the consistency of RCCPs according to random time variations.
METHODS : A Vebe time prediction model was developed using a multiple linear regression analysis. A dataset of 131 samples was used to develop the model. The collected data consisted of variables with large potential effects on the consistency of the RCCP, such as the water-cement ratio (W/C), sand/aggregate ratio (S/a), water content (ω), water content per unit volume (W), cement (C), fine aggregate (S), coarse aggregate (G), water reducing admixtrue (PNS), air-entraining admixture (AE), delay time (T), air temperature (TEM), and humidity (HUM). In the multiple linear regression analysis, the mentioned parameters were used as the independent variables, and the Vebe time was the dependent variable. The Vebe time prediction models were evaluated by considering the adjusted R2 and p-values. The selection of the model was based on the largest R2 value and an acceptable p-value (p<0.05).
RESULTS : The Vebe time prediction model achieved an adjusted R2 value of 64.14% with a significance level (p-value) of less than 0.05. This shows that the predictive model is adequately described for the dependent variable, and that the model is suitable for Vebe time predictions. Moreover, the significance level of the independent variables is less than 0.05, indicating significant effects on the Vebe time (i.e., the dependent variable).
CONCLUSIONS : The Vebe time prediction model developed in this study can be used to estimate Vebe times with an R2 of 63.33% between the measured and predicted values. The proposed Vebe time prediction model is expected to be effectively utilized for the quality control of RCCP mixtures. Moreover, it is expected to contribute to achieving good RCCP construction quality.
PURPOSES : The exposed aggregate concrete pavement (EACP) is adopted to achieve low traffic noise and long-term skid resistance in European countries such as Belgium and Germany. In Korea, it is first introduced at the Myeon Cheon field site in 2010. It reduces 3 dB(A) from tire–pavement noise compared with transverse tining. Recent investigations show that EACP can reduce tire–pavement noise by an additional 5 dB(A) compared with transverse tining. In this study, the tire–pavement interaction noise of EACP is compared with that of conventional pavements such as asphalt pavement, next-generation concrete surfaces (NGCS), and transverse tining. METHODS : EACP is constructed at two field sites on the SOC research center and Yeo-Ju test road to compare the noise level via close proximity noise measurement. In addition, the noise is measured using two vehicle type based on vehicle speeds of 60, 80, and 100 km/h. RESULTS : The results of noise measurement obtained from the SOC research center are as follows: Porous asphalt pavement 92.8 dB(A), HMA 96. dB(A), transverse tining 100.1 dB(A), and 8 mm EACP 97 dB(A) at a driving speed of 80 km/h. For the case of the Yeo-Ju test road. The noise levels at a driving speed of 80 km/h are as follows: 6 mm EACP, 93.6 dB(A); asphalt grooving pavement, 94.72 dB(A); 8 mm EACP, 95.2 dB(A); NGCS, 95.2 dB(A); transverse tining, 104.1 dB(A). CONCLUSIONS : The result of noise measurement of two sites in the SOC research center and test road shows that the noise level of the 6 mm EAC is lower than that of concrete pavement, such as tining and NGCS, and similar to that of asphalt pavement. In addition, the noise level of the 8 mm EAC is similar to that of the NGCS pavement. The noise reduction effect of the EAC is greater when small-sized coarse aggregates with lower flat and elongation ratios are used.