PURPOSES : This study analyzes the accident damage scale of hazardous material transportation vehicles not monitored in real time by the Hazardous Material Transportation Safety (HMTS) management center. METHODS : To simulate hazardous-material transportation vehicle accidents, a preliminary analysis of transportation vehicle registration status was conducted. Simulation analyses were conducted for hazardous substance and flammable gas transportation vehicles with a high proportion of small- and medium-sized vehicles. To perform a spill accident damage-scale simulation of hazardous-substance transportation vehicles, the fluid analysis software ANSYS Fluent was used. Additionally, to analyze explosion accidents in combustible gas transportation vehicles, the risk assessment software Phast and Aloha were utilized. RESULT : Simulation analysis of hazardous material transportation vehicles revealed varying damage scales based on vehicle capacity. Simulation analysis of spillage accidents showed that the first arrival time at the side gutter was similar for various vehicle capacities. However, the results of the cumulative pollution analysis based on vehicle capacity exhibited some differences. In addition, the simulation analysis of the explosion overpressure and radiant heat intensity of the combustible gas transportation vehicle showed that the difference in the danger radius owing to the difference in vehicle capacity was insignificant. CONCLUSIONS : The simulation analysis of hazardous-material transportation vehicles indicated that accidents involving small- and medium-sized transportation vehicles could result in substantial damage to humans and ecosystems. For safety management of these small and medium-sized hazardous material transportation vehicles, it is expected that damage can be minimized with the help of rapid accident response through real-time vehicle control operated by the existing HMTS management center.
PURPOSES : Recently, air pollution due to fine particulate matter has been increasing in Korea. Nitrogen oxides (NOx) are particulate matter precursors significantly contributing to air pollution. Increasing efforts have been dedicated to NOx removal from air, since it is particularly harmful. Application of titanium dioxide (TiO2) for concrete road structures is a suitable alternative to remove NOx. As the photocatalytic reaction of TiO2 is the mechanism that eliminates NOx, the ultraviolet rays in sunlight and TiO2 in existing concrete structures need to be contacted for the reaction process. For the application of vertical concrete road structures such as retaining walls, side ditches, and barriers, a pressurized TiO2 fixation method has been developed considering the pressure and pressurization time. In this study, longterm serviceability and repeatability were investigated on concrete specimens applying the dynamic pressurized TiO2 fixation method. Additionally, the environmental hazards of nitrate adsorbed on TiO2 particles were evaluated. METHODS : Concrete specimens to simulate roadside vertical concrete structures were manufactured and used to evaluate the long-term serviceability and repeatability of the dynamic pressurized TiO2 fixation method. The NOx removal efficiency was measured using NOx evaluation equipment based on ISO 22197-1. In addition, the nitrate concentration was measured using a comprehensive water quality analyzer for evaluating environmental hazards. RESULTS : As the experiment to evaluate the NOx removal efficiency of the dynamic pressurized TiO2 fixation method progressed from one to seven cycles, the nitrate concentration increased from 2.35 mg/L to 3.06 mg/L, and the NOx removal efficiency decreased from 53% to 25%. After seven cycles of NOx removal efficiency evaluation, the average nitrate concentration was 3.06 mg/L. The nitrate concentration collected immediately after the NOx removal efficiency test for each cycle was in the range of 2.51 to 2.57 mg/L. By contrast, it was confirmed that the nitrate concentration was lowered to approximately 2.1 mg/L when the surface was washed with water. CONCLUSIONS : The NOx removal efficiency was maintained at over 25% even after seven cycles of NOx removal efficiency evaluation, securing long-term serviceability. In addition, the harmful effects on the environment and human health are insignificant, since the nitrate concentration was less than 10 mg/L, in accordance with domestic and foreign standards. Practical applicability of the pressurized TiO2 fixation method was established by evaluating the long-term serviceability, repeatability, and environmental hazards.
PURPOSES : The tire-pavement interaction noise (TPIN) comprises four sources, among which the tire tread vibration noise (TTVN) and air pumping noise (APN) are known to be the most influential. However, when evaluating TPIN, the noise level is estimated based on the overall noise, because general noise measurement methods cannot separate TTVN and APN. Therefore, this study aims to develop a method to separate TTVN and APN in TPIN for quantitative assessment of pavement noise. METHODS : Based on the results of our literature review and frequency band noise data measured in our study, we identified the dominant frequency ranges for TTVN and APN. Additionally, we evaluated TTVN and APN across various pavement types. RESULTS : TTVN was found to be dominant in frequency bands below 800 Hz, while APN was dominant in frequency bands above 800 Hz. Additionally, regardless of the vehicle type, vehicle speed, or pavement type, APN exhibited higher levels compared to TTVN. This result shows that APN has a more significant impact on TPIN than TTVN. CONCLUSIONS : The separation method of TTVN and APN proposed in this study can be utilized to quantitatively assess the relationship between the primary noise sources in TPIN and the characteristics of pavement texture in future research. Furthermore, it is anticipated that characteristics of low TPIN and optimal texture conditions can be proposed to mitigate TPIN, thus contributing to the development of lownoise pavements.
PURPOSES : This study aims to provide quantitative profile values for the objective evaluation of concrete surface profile (CSP) grades in concrete structures. The main aims are to quantify the CSP grade required for concrete surface pretreatment and proposing a more suitable CSP grade for structural maintenance. METHODS : Initially, the challenges in measuring concrete surface profiles were outlined by analyzing pretreatment work and profile samples of concrete pavements. Theoretical foundations for quantifying concrete surface roughness were established, and regression models including linear regression, cubic regression, and log regression were selected. Additionally, the interquartile range anomaly removal technique was employed to preprocess the data for regression modeling. RESULTS : Concrete CSP profiles were measured through indoor tests, and the measured data were quantified. Linear regression, cubic regression, and log regression models were applied to each CSP grade for comparative analysis of the results. Furthermore, comparative studies were conducted through adhesion strength tests based on the CSP grade. CONCLUSIONS : Our results are expected to establish objective standards for the pretreatment stage of concrete repair and reinforcement. The derived reference values can inform standards for the restoration and reinforcement of concrete structures, thereby contributing to performance improvement. Moreover, our results may serve as primary data for the repair and reinforcement of various concrete structures such as airports, bridges, highways, and buildings.
PURPOSES : This study analyzed the amount of fuel consumption and atmospheric emissions by type of asphalt concrete mixtures. METHODS : Asphalt concrete mixture was produced directly at the plant, fuel consumption was measured compared to daily production, and atmospheric emissions emitted during the production process were measured. Hot and warm asphalt mixtures were produced, and analyses were conducted according to weather conditions and production volume. RESULTS : The fuel use per ton was confirmed to reduce energy by approximately 23.5% in WMA compared to HMA due to differences in the production temperature during the production of asphalt mixtures. Additionally, HMA production yielded 1.6 times higher atmospheric emissions for CO2 and 3.8 times higher for NOx than that for WMA, indicating that CO2 and NOx emissions tended to increase as fuel consumption increased. CONCLUSIONS : When producing asphalt mixtures, the production temperature, production volume, atmospheric conditions, and site conditions have a significant impact on fuel usage and atmospheric emissions.
PURPOSES : The study aims to establish a comprehensive life cycle assessment model for bridges in South Korea considering domestic carbon emission factors. The main aims are to evaluate the carbon emission of bridge construction, focusing on the Seong-ri Bridge as a case study, and to improve national environmental policies and management strategies. METHODS : We utilized the life cycle assessment (LCA) methodology, adhering to standards set by ISO, to categorize each phase of the bridge's life cycle. The process involved selecting the bridge type based on the compilation of a detailed analysis range. The analysis covered various stages from raw material supply (A1-A3) to construction (A4-A5) and maintenance (B2-B5), excluding certain stages due to data unavailability. Carbon emission factors were then applied to quantify emissions at each stage. RESULTS : The findings indicate that the raw material production phase (A1-A3) contributes to approximately 96% of the total carbon emissions, highlighting its significant impact. We report detailed calculations of emissions using domestically developed emission factors for materials such as steel and concrete and establish a carbon emission per unit length measure for comparative analysis with other infrastructure. CONCLUSIONS : We leveraged LCA ISO standards to analyze each stage of the Seong-ri bridge, calculating its carbon emissions based on domestic factors for CO2, CH4, and N2O. By tailoring the study to Korea-specific emission factors, we develop a greenhouse gas model closely aligned with the nation’s environmental conditions. The results contribute to improving environmental impact assessments and strategically aiding national policy and management decisions.
PURPOSES : The purpose of this study is to identify the causes and expected problems of traffic flow in connection with ground roads that are expected to become stagnant owing to the increase in underground road infrastructure, and to derive methods to solve the problem in the future. METHODS : The basic design of underground roads is similar to that of tunnels. However, there is a point where the slope is large as the entering and exiting sections move underground. The ability of a heavy vehicle to assume a mound may vary depending on the slope. Therefore, in this study, a connection path section with a long slope was constructed using VISSIM, a simulation program, and it was verified whether analysis related to the slope and heavy vehicles in an underground road can be performed in the simulation. Subsequently, an analysis was conducted by setting a scenario and an effect index. In particular, this study analyzes internal delay patterns in the event of an unexpected situation on an underground connection road by performing shock wave analysis to analyze speed reduction according to heavy vehicles and slopes. RESULTS : A correlation between the slope of the underground road and decrease in the average speed according to the increasing rate of heavy vehicles was established. It was also possible to analyze the maximum length and duration of the delay connected to the rear in the event of a delay in the underground road and the shock wave speed transmitted to the rear. The analysis showed that the rate of increase in problems owing to delays ranged from 5% to 20% for the ratio of heavy vehicles. In particular, all effect scales increased significantly at a 9% slope. CONCLUSIONS : This study analyzes the causes of land congestion (slope and heavy vehicle mixing rate), which can be a major problem in underground roads in the future. In the future, by establishing lane-specific speed control strategies and lane control strategies based on this study, it will be necessary to derive solutions such as introducing traffic safety on the underground road by minimizing the shock wave delivered to the rear by providing information on traffic communication conditions inside the underground road to individual vehicles.
PURPOSES : Even when autonomous vehicles are commercialized, a situation in which autonomous vehicles and regular drivers are mixed will persist for a considerable period of time until the percentage of autonomous vehicles on the road reaches 100%. To prepare for various situations that may occur in mixed traffic, this study aimed to understand the changes in traffic flow according to the percentage of autonomous vehicles in unsignalized intersections. METHODS : We collected road information and constructed a network using the VISSIM traffic simulation program. We then configured various scenarios according to the percentage of autonomous vehicles and traffic volume to understand the changes in the traffic flow in the mixed traffic by scenario. RESULTS : The results of the analysis showed that in all scenarios, the traffic flow on major roads changed negatively with the mix of autonomous vehicles; however, the increase or decrease was small. By contrast, the traffic flow on minor roads changed positively with a mix of autonomous vehicles. CONCLUSIONS : This study is significant because it proactively examines and designs traffic flow changes in congested traffic that may occur when autonomous vehicles are introduced.
PURPOSES : This study aims to calculate the estimation of travel time saving benefits from smart expressway construction by considering the willingness to pay for automated vehicles. METHODS : In this study, data were collected from 809 individual drivers through a stated preference survey. A multinomial logit model was constructed to analyze the choice behavior between arterial roads, expressways, and smart expressways. Through this, the values of time and benefits were estimated. RESULTS : The value of time was calculated at 19,379 won per vehicle per hour for arterial roads and expressways and 23,061 won per vehicle per hour for smart expressways. Applying these values to the Jungbu Naeryuk expressway, we evaluated the demand change and benefits resulting from the improvement to the smart expressways. The results show that the traffic volume on the Jungbu Naeryuk expressway is expected to increase by 4.7% to 20.7% depending on the changes in capacity. CONCLUSIONS : The travel time saving benefits are estimated as positive, resulting from the construction of smart expressways. The benefits resulting from the construction of new smart expressways are expected to be enhanced due to the anticipation of more significant time-saving effects.
PURPOSES : This study presents an application plan for parking spaces for shared e-scooters using the clearance widths of sidewalks. The detailed purposes are as follows: firstly, to present appropriate spaces for installing parking lots for shared E-scooters. Secondly, to derive the specifications of parking unit spaces for shared E-scooters. Thirdly, to derive the formula for calculating the parking angle of shared E-scooters. Lastly, to provide examples of calculating the parking angle using the derived formula. METHODS : Based on the literature review, appropriate locations for installing parking spaces for shared E-scooters on sidewalks were proposed. We also investigated design factors based on a literature review to derive the specifications of parking unit spaces for shared E-scooters, and utilized the geometric characteristics of clearance widths of sidewalks to derive a formula for calculating the parking angle. Finally, we provide examples of calculating the parking angle for shared E-scooters using the derived formula. RESULTS : The results of this study are as follows. We proposed clearance widths of sidewalks as appropriate spaces for installing parking spaces for shared E-scooters. Next, we derived the specifications of parking unit spaces for shared E-scooters considering anthropometric measurements, specifications of shared E-scooters, and clearance dimensions. Moreover, we derived a formula for calculating the parking angle of shared E-scooters considering clearance widths of sidewalks. Finally, we presented examples of calculating the parking angle for shared E-scooter parking unit spaces based on clearance widths of sidewalks. CONCLUSIONS : It was concluded that the application for parking spaces for shared e-scooters using the clearance widths of sidewalks was presented. We derived the standard and compact specifications of parking unit spaces for shared E-scooters, and provided foundational data for estimating the parking capacity using a formula for calculating the parking angle of shared E-scooters. Future research directions include presenting case studies of estimating parking capacity using the parking angle of shared E-scooters.
PURPOSES : The aim of this study is to develop a road fog information system based on the geostationary meteorological satellite (GK2A) for road weather services on highways. METHODS : Three threshold values sensitive to fog intensity in the GK2A fog algorithm were optimized using multi-class receiver operating characteristic analysis to produce road fog information depending on day and night. The developed a GK2A road fog algorithm that can detect three levels of road fog based on the visibility distance criteria (1km, 500m, and 200m). Furthermore, the GK2A road fog product was not only substituted with visibility objective analysis data in unknown and cloud-covered areas of satellite data, but also integrated with visibility distance data obtained from visibility gauges and CCTV image analysis to improve the accuracy of road fog information. RESULTS : The developed road fog algorithm based on meteorological satellite data provides real-time road fog information categorized into three levels (attention, caution, and danger) based on the visibility distance, with a spatial resolution of 1km × 1km and temporal resolution of 5 minutes. The road fog algorithm successfully detected road fog in five out of seven fog-related traffic accidents reported by Korean media outlets from 2020 to 2022, resulting in a detection success rate of 71.4%. The Korea Meteorological Administration is currently in the process of installing additional visibility gauges on 26 highways until 2025, and the next high-resolution meteorological satellite (GK5) is planned to be launched in 2031. We look forward to significantly improving the accuracy of the road fog hazard information service in the near future. CONCLUSIONS : The road fog information test service was initiated on the middle inner highway on July 27, 2023, and this service is accessible to all T-map and Kakao-map users through car navigation systems free of charge. After 2025, all drivers on the 26 Korean highways will have access to real-time road fog information services through their navigation systems.
PURPOSES : This study explores the preference of shared autonomous vehicle service in an underground dedicated environment. METHODS : A stated preference survey was conducted to examine the mode choice behaviors on autonomous vehicle service competing with existing modes. Multinomial logit was employed to estimate the parameters of explanatory variables from the surveyed data. The model was estimated with alternative specific parameters rather than generic parameters. The value of time was also estimated using the parameters of the mode choice model. RESULTS : The results showed that the travel cost had the highest sensitivity to public transportation and the lowest to private cars. We also found that the value of the in-vehicle travel time was highest for private cars, lowest for public transportation, and intermediate for SAVs, suggesting that SAVs could serve as a premium public transport option. Additionally, the out-vehicle time coefficient was higher for public transportation compared to that for SAVs, indicating that users are more willing to tolerate longer out-vehicle times for SAVs due to their high-speed service compared to that of public transportation. CONCLUSIONS : This study presents a direction for policy regarding the adoption of shared autonomous vehicle services by considering the attributes that are valued by users of each mode.
PURPOSES : The variability of hot bin aggregate weighing was evaluated through analysis of production data from three domestic asphalt batch plants. METHODS : Years of HMA production data that includes 94,362 batches from three HMA plants are analyzed for the study. Through the evaluation, the influencing factors of hot bin aggregate measurement variability were analyzed. RESULTS : The variability of hot bin aggregate weighing was found to vary greatly depending on the plant, and it was also found that the variability maintains a certain level regardless weighing amount in each hot bin. Also mixture type turns out to be the one of the major influencing factor that SMA showed the smallest variation in hot bin aggregate weighing, which imply the variability could be reduced by strengthening quality management effort. In addition, hot bin gate driving method did not show any significant effect on the variability while 2nd hot bin showed highest variability. CONCLUSIONS : Based on this analysis, problems with the current hot bin aggregate measurement standards were identified, and alternative criteria that could be improved were proposed.
PURPOSES : This study presents a general guideline for the initial management of traffic signal timings in response to traffic incidents, prior to the implementation of specific treatments in detail. The proposed solution includes a set of optimal reductions in the green time rates at three signalized intersections upstream. METHODS : To account for the various traffic and incident conditions that may be encountered, a total of 36 traffic-condition scenarios were prepared. These scenarios encompass a wide range of conditions, from unsaturated to near-saturated conditions, and were designed to provide a comprehensive understanding of the impact of traffic conditions on signal timing. For each of the traffic conditions, all 27 traffic signal timing combinations were subjected to testing. A total of 972 simulation analyses were conducted using the SUMO model. The results indicated that the scenario with the lowest control delay was the optimal choice. RESULTS : The results indicated that the most effective initial management for the traffic incident would be to reduce the green signal timings by 20% at the first two upstream intersections and by 40% at the third intersection. CONCLUSIONS : We propose reducing the green times by 20% at the first and second intersections and by 40% at the third intersection as the initial response of the traffic signal control center when a traffic incident occurs.