간행물

한국도로학회논문집 KCI 등재 International journal of highway engineering

권호리스트/논문검색
이 간행물 논문 검색

권호

제23권 제5호 (2021년 10월) 9

1.
2021.10 구독 인증기관 무료, 개인회원 유료
PURPOSES : In this study, we aimed to develop an absorption and insulation soundproof board with excellent noise reduction ability using waste tire powder. METHODS : An optimum mix ratio of sound absorption material and sound insulation material was derived through a sound absorption test and a compressive strength test; a combustion test was performed to confirm whether the combustibility evaluation criteria were satisfied. Additionally, to derive a shape with excellent noise reduction ability, noise prediction simulation was performed. RESULTS : Through the sound absorption test, compressive strength test, and combustion test, an optimum mix ratio of sound absorption material and sound insulation material as well as a shape with excellent noise reduction ability was derived through noise prediction simulation. CONCLUSIONS : An absorption and insulation soundproof board was applied with sound absorption material and sound insulation material developed using waste tire powder. The recycling rate improved; thus, excellent noise reduction ability can be expected by developing not only materials but also shapes.
4,000원
2.
2021.10 구독 인증기관 무료, 개인회원 유료
PURPOSES : Rut depth of asphalt pavements is a major factor that affects the maintenance of pavements as well as the safety of drivers. The purpose of this study was to analyze the factors influencing rut depth, using data collected periodically on national highways by the pavement management system and, consequently, predict annual rut depth change, to contribute to improved asphalt pavement management. METHODS : The factors expected to influence rut depth were determined by reviewing relevant literature, and collecting the related data. Further, the correlations between the annual rut depth change and the influencing factors were analyzed. Subsequently, the annual rut depth change model was developed by performing regression analysis using age, present rut depth, and annual average maximum temperature as independent variables. RESULTS : From the sensitivity analysis of the developed model, it was found that age affected the annual rut depth change the most. Additionally, the relationship between the dependent and independent variables was statistically significant. The model developed in this study could reasonably predict the change in the rut depth of the national highway asphalt pavements. CONCLUSIONS : In summary, it was verified that the model developed in this study could be used to predict the change in the National Highway Pavement Condition Index (NHPCI), which represents comprehensive conditions of national highway pavements. Development of other models that predict changes in surface distress as well as international roughness index is required to predict the change in NHPCI, as they are the independent variables of the NHPCI prediction model.
4,000원
3.
2021.10 구독 인증기관 무료, 개인회원 유료
PURPOSES : In this study, we aimed to investigate the heat transfer characteristics of asphalt mixtures by water saturation. METHODS : On the basis of the literature review, the heat transfer characteristics of the samples were analyzed using a thermal accumulation experiment. The types of samples used were WC2 (dense asphalt mixture), ReWC2 (used 30% recycled aggregate), and PA13 (drainage asphalt mixture). The samples were compacted using a gyratory compactor. An infrared lamp simulating insolation was used to continuously heat the asphalt sample. Through this experiment, the upper and lower temperatures and heat flux of the specimen according to its thickness and condition were measured, and the change in its thermal conductivity was analyzed. RESULTS : The results of the laboratory experiment indicated that the dry sample showed lower thermal conductivity than the saturated sample. The amount of evaporation varied depending on the internal pores of the sample. Additionally, the amount of evaporation changed the heat transfer characteristics of the specimen. CONCLUSIONS : An asphalt mixture with high porosity decreased the degree of increase in thermal conductivity, compared to mixtures with low porosity, under semi-saturated conditions; this was attributed to the difference in thermal conductivity between air and water during saturation. The results of this study on the heat transfer characteristics of asphalt pavements could be used as basic data for thermal energy harvesting of asphalt pavements.
4,000원
4.
2021.10 구독 인증기관 무료, 개인회원 유료
PURPOSES : Graphene nanoplates, which have recently been in the spotlight in various fields, are a layer of graphite used in pencil leads, with carbon arranged in hexagonal honeycomb shapes. The graphene is 0.2 nanometers thick, and it possesses high physical and chemical stability, high strength, and conductivity. These graphene nanoplates have been studied for application in various devices such as semiconductors and batteries, and in the construction sector, where they are used as additives to improve the durability of cement concrete. The purpose of this study was to investigate the physical, and functional properties of graphene-modified asphalt mixtures. METHODS : In this study, the graphene input content of asphalt mixture samples was determined using an asphalt performance grade (PG) test. Based on the results of the test, their strength, stiffness, thermal properties, and electrical conductivity were evaluated. Indirect tensile strength test and dynamic modulus (DM) test were conducted to evaluate the strength and stiffness, and thermal conductivity tests and electrical conductivity evaluations were conducted for determining the functionality of the graphene-modified asphalt mixtures. The thermal conduction test was used to measure the external temperature change over time by placing a general heated asphalt mixture and graphene-modified asphalt with the same raw material-specific mixing ratio inside the temperature chamber in order to measure the heat conductivity. The electrical conductivity was evaluated using a digital multimeter to measure the resistance of DC voltage and DC current via a 4-probe method. RESULTS : The performance grade (PG) test results showed that, for a dynamic shear rheometer (DSR), both tests met the baseline and that physical changes in the binder did not appear evident with graphene addition. Furthermore, each content met the baseline for the bending beam rheometer (BBR). The increasing ratio of flexural creep stiffness approached the maximum when 7.5% graphene was used. In indirect tensile strength test, an average of thrice the indirect tensile strength for graphene-modified asphalt was 0.92 N/mm2, which was approximately 0.04 N/mm2 higher than the average measured three times that of hot mix asphalt mixture, with the same raw material mixing ratio. In the thermal conduction tests, the temperature and the rate of change of temperature of the graphene-modified asphalt mixture were higher than those of the hot-mix asphalt mixture. Lastly, the results of the electric conductivity test using the 4-probe method showed that the electrical conductivity increased slightly as the graphene content increased, but overall, it showed very low electrical conductivity. CONCLUSIONS : In this study, the potential for enhancing the physical and functional performance of graphene nanoplates applied to asphalt mixtures was demonstrated. However, it is practically difficult to arrange graphene particles continuously within an asphalt mixture, which is believed to have very low electrical conductivity.
4,000원
5.
2021.10 구독 인증기관 무료, 개인회원 유료
PURPOSES : Recently, interest in maintaining aged concrete pavements has been increasing. An asphalt overlay is generally used for pavement maintenance, and a tack coat is used to secure interlayer adhesion. Particularly, aged concrete pavements are required for higher adhesion performance of tack coats for attaching interlayers to materials with different properties. Insufficient interlayer adhesion could cause pavement damage, such as slippage, rutting, shoving, corrugation, and pothole. In this study, we examined the performance of interface adhesion by applying a tack coat material developed for maintaining aged concrete pavement. METHODS : In this study, we examined the effect of adhesion performance at the pavement interface, using a tack coat material developed for the maintenance of aged concrete pavement. RESULTS : The developed tack coat not only accomplished the performance objectives but also improved the results by more than 12 to 43%, compared to commonly used materials. CONCLUSIONS : The use of developed tack coat is expected to improve the interlayer adhesion and reduce the delay of the maintenance process in aged concrete pavement.
4,000원
6.
2021.10 구독 인증기관 무료, 개인회원 유료
PURPOSES : In this study, we analyzed the characteristics of nitrogen oxide and fine particulate matter concentration for boarding positions at the bus stop of an exclusive bus lane, using a correlation analysis and a generalized linear model. METHODS : To analyze the air pollution characteristics for boarding positions at the bus stop, data on nitrogen oxide, fine particulate matter concentration, relative humidity, temperature, wind speed, solar radiation, and bus traffic volume were acquired. Using the collected data, a correlation analysis for nitrogen oxide and fine particulate matter was carried out for each boarding position. Additionally, the prediction models for each pollutant were estimated using a generalized linear model, to analyze their characteristics. RESULTS : Correlation analysis revealed that relative humidity and bus volume were positively correlated with both nitrogen oxide and fine particulate matter concentrations in all boarding positions, whereas temperature, wind speed, and solar radiation were negatively correlated. Based on the estimated models from the generalized linear model, the nitrogen oxide concentration at the first measurement point was found to be affected by relative humidity, temperature, and bus volume, whereas at the second measurement point, it was found to be affected by relative humidity, temperature, and solar radiation. Additionally, all factors were significant for fine particulate matter concentration at both boarding positions. CONCLUSIONS : The analytical results indicated that the characteristics of nitrogen oxide and fine particulate matter concentration at the bus stop of an exclusive bus lane varied significantly depending on the boarding positions. Particularly, it was found that the correlation between solar radiation, and nitrogen oxide and fine particulate matter was different because of the conversion of nitrogen oxide to fine particulate matter.
4,000원
7.
2021.10 구독 인증기관 무료, 개인회원 유료
PURPOSES : For high driving performance and service life of cement concrete pavement, construction quality must be secured. The construction quality is to be measured after pavement construction, but in this case, it is difficult to improve construction quality. Therefore, it is necessary to develop a method for measuring and correcting the profile of the pavement and subbase so that the construction quality can be monitored immediately after construction. METHODS : The device that can measure the construction quality of cement concrete pavement has been developed. Through the experiment simulating the field situation, the profile of the pavement and subbase was measured and calibration method was developed. RESULTS : In the measured profile, an outlier by the sensor and noise by the sensor and vibration were measured, and a step-like profile was measured differently from the acture one. To remove outliers, the boxplot outlier removal method was applied by overlapping each data group. The noise were removed by a low pass filtering. And, it was calibrated to a profile similar to the acture one through the sampling interval adjustment and the weighted moving average method. CONCLUSIONS : The method that can measure and calibrate the profile that is almost identical to the actual one has been developed. Accordingly, it is expected that the performance of the pavement can be improved by accurately monitoring the construction quality immediately after construction.
4,200원
8.
2021.10 구독 인증기관 무료, 개인회원 유료
PURPOSES : The purpose of this study is to evaluate the road design elements affecting the lateral driving safety under high-speed driving conditions with a speed limit of 140 km/h and to derive useful implications to design of safer roads. METHODS : A full-scale driving simulator was used to evaluate the various design scenarios. Different regression techniques and a random forest method were adopted to conduct comprehensive comparisons among the simulation scenarios. The relationships between the safety indicators, including the frequency of the lane departures and the standard deviation of the lateral acceleration, and the design elements were explored in terms of lateral driving safety. RESULTS : The length of the combined alignment was found to be a significant factor affecting the lateral driving safety based on the analysis of the frequency of lane departures. Regarding the standard deviation of the lateral acceleration, it was identified that the length of the horizontal curve, the length of the bridge, and the right-side superelevation must be considered significant factors associated with driving safety while designing the road under high-speed driving conditions. CONCLUSIONS : Based on the findings of this study, a set of recommendations for designing roads was proposed. For example, the proper length of the combined alignment and the horizontal curve should be determined to prevent crashes due to hazardous lateral driving events because the installation of sufficient superelevation in the bridge section would be limited under high-speed driving conditions. In addition, applying a larger horizontal curve radius with longitudinal grooving is a promising approach to tackle risky driving conditions.
4,200원
9.
2021.10 구독 인증기관 무료, 개인회원 유료
PURPOSES : This study aims to develop an algorithm to solve the user equilibrium traffic assignment problem using soft link capacity constraints. This model is used to relax the hard capacity constraints model. METHODS : In the traffic assignment model that imposes the hard capacity constraints, the well-known solution algorithms used are the augmented Lagrange multiplier method and the inner penalty function method. The major drawback of using the hard-capacity constraint model is the feasible solution issue. If the capacities in the network are not sufficient to absorb the flow from the diverged flows through the hard capacity constraints, it might result in no solution; whereas, using a soft capacity constraint model guarantees a feasible solution because the soft capacity constraint model uses the penalization of constraint violation in the objective function. In this study, the gradient projection (GP) algorithm was adapted. RESULTS : Two numerical experiments were conducted to demonstrate the features of the soft capacity constraint model and the computational performance of the solution algorithm. The results revealed that imposing the soft link capacity constraints can ensure convergence. CONCLUSIONS : The proposed model can be easily extended by considering other traffic assignment models, for e.g., non-additive traffic equilibrium problem, stochastic traffic equilibrium model, and, elastic demand traffic equilibrium problem. Furthermore, the model can exist regardless of the sufficient capacity for each O-D pair to cater to their demands.
4,000원