본 연구는 노후화된 교량의 단면 보수를 위한 고성능 콘크리트 보수재료를 개발하는 것을 목표로 하여 진행하였다. 건식 숏크리트 방법을 사용하여 최적의 혼합비를 도출하기 위해 재료에 대한 기본 실험을 바탕으로 내구성 및 수밀성 측면에서 적합한 성능을 개발 하기 위한 실험을 진행하였다. 본 연구는 실리카 흄, 고로슬래그, 자연섬유 등을 혼합하여 각 변수별 차이를 비교하였으며, 압축강도, 소성 수축, 염소 이온 침투 저항성, 동결융해 실험을 통해 성능을 평가하였다. 본 연구 결과 실리카 흄과 천연 섬유를 혼합하여 내구 성 및 수밀성을 확보한 채 팽창제와 폴리머 분말수지를 혼입하여 적합한 성능을 가진 보수재료를 개발하기 위한 기초 연구를 완료하 였다. 이 보수재료는 압축강도, 동결융해 저항성, 소성수축 균열 저감성, 염소 이온 침투 저항성 측면에서 우수한 성능을 보여줄 것이 다. 본 연구에서 개발될 보수재료는 기존 보수 모르타르보다 성능이 우수하며, 건식 숏크리트 방식을 사용하기 때문에 작업 및 후처리 과정이 습식 숏크리트 방식보다 간단하여 소구 작업에 더욱 효율적일 것으로 판단된다.
(Bi1/2Na1/2)TiO3 (BNT)-based ceramics are considered promising candidates for actuator application owing to their excellent electromechanical strain properties However, to obtain large strain properties, there remain several issues such as thermal stability and high operating fields. Therefore, this study investigates a reduction of operating field in (0.98-x)Bi1/2Na1/ 2TiO3-0.02 BiAlO3-xSrTiO3 (BNT-2BA-100xST, x = 0.20, 0.21, 0.22, 0.23, and 0.24) via analyses of the microstructure, crystal structure, dielectric, polarization, ferroelectric and electromechanical strain properties. The average grain size of BNT-2BA- 100xST ceramics decreases with increasing ST content. Results of polarization and electromechanical strain properties indicate that a ferroelectric to relaxor state transition is induced by ST modification. As a consequence, a large electromechanical strain of 592 pm/V is obtained at a relatively low electric field of 4 kV/mm in 22 mol% ST-modified BNT-2BA ceramics. We believe that the materials synthesized in this study are promising candidates for actuator applications.
PURPOSES : For high driving performance and service life of cement concrete pavement, construction quality must be secured. The construction quality is to be measured after pavement construction, but in this case, it is difficult to improve construction quality. Therefore, it is necessary to develop a method for measuring and correcting the profile of the pavement and subbase so that the construction quality can be monitored immediately after construction. METHODS : The device that can measure the construction quality of cement concrete pavement has been developed. Through the experiment simulating the field situation, the profile of the pavement and subbase was measured and calibration method was developed.
RESULTS : In the measured profile, an outlier by the sensor and noise by the sensor and vibration were measured, and a step-like profile was measured differently from the acture one. To remove outliers, the boxplot outlier removal method was applied by overlapping each data group. The noise were removed by a low pass filtering. And, it was calibrated to a profile similar to the acture one through the sampling interval adjustment and the weighted moving average method. CONCLUSIONS : The method that can measure and calibrate the profile that is almost identical to the actual one has been developed. Accordingly, it is expected that the performance of the pavement can be improved by accurately monitoring the construction quality immediately after construction.
PURPOSES : Given that large-scale repair works of expressway bridge pavements have high maintenance cost and long traffic blocking time, the thin overlay method that maintains the existing pavement is attracting attention. In this study, because the bridge thin overlay has not been introduced in Korea yet, the basic physical properties of the epoxy thin overlay, which is mainly used for the bridge thin overlay, were investigated, and the skid resistance and bond performance were analyzed.
METHODS : Basic physical property tests were performed on each of the epoxy binders, aggregates, and mixtures used in epoxy thin overlay. They were also compared and reviewed against foreign standards. The epoxy binders were tested for viscosity, gel time, and thermal compatibility. The aggregates were tested in terms of water absorption, specific gravity, and gradation. The compressive and flexural strengths of the mixtures were investigated. The epoxy thin overlay has the possibility of detachment of aggregates, so the skid resistance was tested according to the paving phase. In addition, to investigate the bond performance, which is the most important performance of the epoxy thin overlay, the bond strength test was performed by varying the moisture condition and treatment condition of the existing layer surface.
RESULTS : The basic physical properties of the materials used in the epoxy thin overlays satisfied foreign standards except for the gradation of aggregates. The skid resistance did not satisfy the standard when the epoxy was exposed, whereas the skid resistance did satisfy the standard when the aggregates were exposed, even after the abrasion test. The bond strength of the epoxy thin overlay satisfied the standard in all cases. The bond strength was the highest when the relative humidity of the existing layer surface was 60%.
CONCLUSIONS : The materials of epoxy thin overlay that could be obtained in Korea satisfied the basic physical property standards except for aggregate gradation. Given that the aggregate gradation could be adjusted, it can be concluded that the epoxy thin overlay could be introduced in Korea. In addition, it was confirmed that the skid resistance and bond strength of the epoxy thin overlay were high enough to be used in general road conditions. It was determined that the existing layer surface should maintain an optimal relative humidity of approximately 60% because the moisture condition affects the bond strength.