검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 250

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : High temperatures induce excessive expansion in pavements, thus causing the closure of contraction joints between expansion joints. This results in the integration of slabs within the expansion joints into a unified slab. Compressive forces are generated owing to the friction that ensues between the unified slab and lower base layer. As the integrated slab expands and exceeds the allowable width of the expansion joint, the end restraint generates an additional compressive force. The escalating force, which reaches a critical threshold, induces buckling, thus compromising stability and causing blow-up incidents, which poses a significant hazard to road users. The unpredictable nature of blow-up incidents render their accurate prediction challenging because the compressive force within the slab must be predicted and the threshold for blow-up occurrence must be determined. METHODS : In this study, a GWNU blow-up model was developed to predict both the compressive force and period of blow-up incidents in jointed concrete pavements. The climate conditions, pavement structure, materials, and expansion joints were considered in this model. In the first stage of the model, the time at which the integrated slab expanded and surpassed the allowable width of the expansion joint was determined, and the compressive force was calculated. Subsequently, the compressive force within the integrated slab, considering both the end restraints and friction, was predicted. A large-scale blow-up test was performed to measure the blow-up force based on changes in the geometric imperfections. The measured blow-up force was adopted as the blow-up occurrence threshold, and the point at which the predicted compressive force within the slab exceeded the blow-up force was identified as the blow-up occurrence time. RESULTS : Using the GWNU blow-up model, the blow-up occurrence on the Seohean Expressway in Korea is predicted in the presence or absence of the alkali-silica reaction (ASR). Analysis is conducted using the expansion joint spacing and width as variables. As the expansion joint spacing increases, blow-up occurs sooner, and as the width increases, only the expansion joint life decreases. When applying an expansion joint spacing of 300 m and a width of 100 mm under an ASR with 99.9% TTPG reliability, the sum of the expansion joint life and blow-up occurrence time is 16 years. CONCLUSIONS : In the case of jointed concrete pavements where ASR occurred, installing an expansion joint spacing of 300 m and a width of 100 mm does not satisfy the design life of 20 years, and the expansion joint width minimally affect the blow-up occurrence time. To prevent blow-up incidents, a spacing of less than 300 m for the expansion joint is recommended. Based on the analysis results, the blow-up occurrence time and location can be predicted from the characteristics of the installed expansion joint, through which blow-up incidents can be prevented via preliminary maintenance.
        4,600원
        2.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Pavement surface friction depends significantly on pavement surface texture characteristics. The mean texture depth (MTD), which is an index representing pavement surface texture characteristics, is typically used to predict pavement surface friction. However, the MTD may not be sufficient to represent the texture characteristics to predict friction. To enhance the prediction of pavement surface friction, one must select additional variables that can explain complex pavement surface textures. METHODS : In this study, pavement surface texture characteristics that affect pavement surface friction were analyzed based on the friction mechanism. The wavelength, pavement surface texture shape, and pavement texture depth were hypothesized to significantly affect the surface friction of pavement. To verify this, the effects of the three abovementioned pavement surface texture characteristics on pavement surface friction must be investigated. However, because the surface texture of actual pavements is irregular, examining the individual effects of these characteristics is difficult. To achieve this goal, the selected pavement surface texture characteristics were formed quantitatively, and the irregularities of the actual pavement surface texture were improved by artificially forming the pavement surface texture using threedimensionally printed specimens. To reflect the pavement surface texture characteristics in the specimen, the MTD was set as the pavement surface texture depth, and the exposed aggregate number (EAN) was set as a variable. Additionally, the aggregate shape was controlled to reflect the characteristics of the pavement surface texture of the specimen. Subsequently, a shape index was proposed and implemented in a statistical analysis to investigate its effect on pavement friction. The pavement surface friction was measured via the British pendulum test, which enables measurement to be performed in narrow areas, considering the limited size of the three-dimensionally printed specimens. On wet pavement surfaces, the pavement surface friction reduced significantly because of the water film, which intensified the effect of the pavement surface texture. Therefore, the pavement surface friction was measured under wet conditions. Accordingly, a BPN (wet) prediction model was proposed by statistically analyzing the relationship among the MTD, EAN, aggregate shape, and BPN (wet). RESULTS : Pavement surface friction is affected by adhesion and hysteresis, with hysteresis being the predominant factor under wet conditions. Because hysteresis is caused by the deformation of rubber, pavement surface friction can be secured through the formation of a pavement surface texture that causes rubber deformation. Hysteresis occurs through the function of macro-textures among pavement surface textures, and the effects of macro-texture factors such as the EAN, MTD, and aggregate shape on the BPN (wet) are as follows: 1) The MTD ranges set in this study are 0.8, 1.0, and 1.2, and under the experimental conditions, the BPN (wet) increases linearly with the MTD. 2) An optimum EAN is indicated when the BPN (wet) is the maximum, and the BPN decreases after its maximum value is attained. This may be because when the EAN increases excessively, the space for the rubber to penetrate decreases, thereby reducing the hysteresis. 3) The shape of the aggregate is closely related to the EAN; meanwhile, the maximum value of the pavement surface friction and the optimum EAN change depending on the aggregate shape. This is believed to be due to changes in the rubber penetration volume based on the aggregate shape. Based on the results above, a statistical prediction model for the BPN (wet) is proposed using the MTD, EAN, and shape index as variables. CONCLUSIONS : The EAN, MTD, and aggregate shape are crucial factors in predicting skid resistance. Notably, the EAN and aggregate shape, which are not incorporated into existing pavement surface friction prediction models, affect the pavement surface friction. However, the texture of the specimen created via three-dimensional printing differs significantly from the actual pavement surface texture. Therefore, the pavement surface friction prediction model proposed in this study should be supplemented with comparisons with actual pavement surface data in the future.
        4,600원
        3.
        2024.03 구독 인증기관·개인회원 무료
        This study addresses the environmental impact associated with waste management and natural aggregate production. It explores the potential of utilizing Coal Bottom Ash (CBA) and Reclaimed Asphalt Pavement Aggregate (RAPA) as complete replacements, respectively, for fine and coarse aggregates in concrete. Despite their similarities to natural aggregates, CBA and RAPA often end up in landfills. Laboratory tests were conducted, revealing satisfactory performance in drying shrinkage and air void parameters. However, while the flexural strength met design requirements, the compressive and splitting tensile strengths were lower than predicted. The deviation in strength development behavior from natural aggregate concrete (NAC) was attributed to weak agglomerated aggregates in RAPA and the large size of the interfacial transition zone (ITZ) due to the old asphalt coating surrounding RAPA. To enhance the strength behavior, two methods were employed: compaction in the form of roller-compacted concrete and RAPA abrasion carried out by rolling RAPA in a concrete mixer. Compaction improved aggregate interlock, while RAPA abrasion decreased agglomerated aggregates and minimized asphalt coating, reducing ITZ size. These treatments resulted in improvements in compressive, flexural, and splitting tensile strengths, with the combination of both treatments having the most significant effect. Analysis of relationships between flexural, splitting tensile, and compressive strengths indicated that CBA and RAPA concrete behaved more similarly to NAC after the treatments. This research suggests that with appropriate interventions, it is feasible to utilize CBA and RAPA in concrete, contributing to sustainable construction through improved waste management, carbon footprint reduction, and conservation of natural resources.
        4.
        2024.03 구독 인증기관 무료, 개인회원 유료
        Since the decrease of skid resistance of the road surface due to the effects of hydroplaning increases the ratio of vehicle crashes significantly, it is important to predict water film thickness (WFT). Tined is one of the widely used textures for concrete pavements. Since previous WFT models have been developed based on the asphalt pavement texture and broom concrete, it may not give reliable predictions for Water film thickness for tinned concrete. Furthermore, surface flow on tined texture may show hydraulically different characteristics due to the geometric characteristics of tined texture. This study aims to propose a reliable water film thickness prediction model for tined concrete. Three test slabs including a smooth surface, a tined surface with 16mm spacing, and a tined surface with 25mm spacing were prepared. WFTs of the test slab were measured for various conditions such as pavement slope (0-10%), rainfall intensity (0-130mm/h), and drainage path length (0-5m). A statistical model was proposed to predict water film thickness (WFT) as a function of pavement slope, rainfall intensity, drainage path length, and mean texture depth. This model exhibits strong agreement with the experimental test results. The GWNU prediction model consistently provides reliable predictions with the actual WFT for tined concrete pavement. Conversely, the previous equation consistently underestimated the water film thickness, notably on tined surfaces with 16 mm and 25 mm spacing, due to the occurrence of viscous flow along the tined lines.
        3,000원
        5.
        2024.03 구독 인증기관·개인회원 무료
        The strength criteria is the acceptable strength for allowable a vehicle start on a concrete pavement at an early age without causing significant damage. The different agencies have provided the strength criteria based on empirical judgement. To make more comprehensive, the ACI specification provided strength criteria by consideration traffic conditions, slab thicknesses, and slab support based on the concept of damage. However, its neglected to consider the damage caused by curling stress due to temperature gradient in concrete pavement. This research aims to provide a strength criteria for opening traffic on concrete pavements while taking into account the damage caused by curling stress and traffic loading. The tensile stress at critical locations was determine due to curling and traffic loads every hour of early age throughout different seasons. The fatigue damage taken throughout early age was assessed. After this procedure, the strength criteria was established as the evaluated damage that did not exceed an acceptable limit. Accordingly, the strength criteria for opening traffic was determined to ensure that the specified damage level existed subject to the construction season, construction period, traffic type, slab thickness, and slab support of concrete pavement.
        6.
        2024.03 구독 인증기관·개인회원 무료
        노면 마찰력은 포장 표면과 타이어의 마찰력으로 인해 발생하는 현상으로 높은 노면의 마찰력은 제동 중 차량의 안정성과 조종성을 향상시킨다. 노면 마찰력이 증가함에 따라 교통사고 횟수가 감소하는 것으로 알려져 있으며 습윤 상태의 노면에서 교통사고가 증가하 는 것으로 알려져있다. 따라서 교통사고 발생 억제와 도로 안전의 확보를 위해서는 적정 수준의 노면 마찰력, 특히 습윤 상태의 노면 마찰력을 확보하는 것이 중요하다. 노면 마찰력은 adhesion과 hysteresis로 분류되며 특히 습윤상태 도로에서 hysteresis가 중요한 역 할을 한다. hysteresis는 고무의 변형에 의해 발생하기 때문에 고무 변형에 영향을 미치는 노면 조직 변수를 선정하여 노면 마찰력을 예측하고자 한다. 노면 마찰력은 노면 조직 특성과 밀접한 관련이 있으며, 이에 따라 노면 조직 특성을 나타내는 지수 중 하나인 MTD(Mean Texture Depth)가 노면 마찰력 예측을 위한 인자로 사용되고 있는 실정이다. 하지만 MTD는 노면 조직 깊이만을 평가하 는 인자로 다양한 요소가 결합되어 있는 노면 조직 특성을 모두 설명할 수 없으며, 노면 마찰력 예측을 위해서는 복잡한 노면 조직을 설명할 수 있는 추가 변수의 선정이 요구된다. 본 연구에서는 노면 마찰력의 메커니즘 분석을 토대로 노면 마찰력에 영향을 미치는 노면 조직 특성을 분석하였고, wave-length와 노면 조직의 형태, 노면 조직 깊이가 노면 마찰력에 미치는 영향이 클 것으로 예상하였 다. 이를 검증하기 위해서는 3가지 노면 조직 특성이 노면 마찰력에 미치는 영향에 대한 검토가 요구되나 실제 도로의 노면은 노면 조직이 불규칙하게 형성되어 있어 노면 조직 특성의 개별적 영향을 검토하기 어렵다. 이를 위해서는 선정한 노면 조직 특성의 정량적 형성이 요구되며 3D 프린팅 시편을 제작해 노면 조직을 인위적으로 형성함으로써 실제 도로 노면 조직의 불규칙성을 개선하였다. 노 면 조직 특성을 시편에 반영하기 위해 노면 조직 깊이는 MTD, wave-length는 노출 골재의 개수를 뜻하는 EAN을 변수로 설정하였 다. 또한 EAN(Exposed Aggregate Number)은 노출 골재의 형성이 필수적이므로 골재의 형상을 제어하여 노면 조직의 형태를 시편에 반영하였으며 골재 형상과 노면 마찰력의 통계학적 분석을 위해 형상 지수를 산출하여 분석하였다. 3D 프린팅 시편은 크기에 제한이 있어 좁은 영역에서 측정이 용이한 BPT(British Pendulum Test)를 사용해 노면 마찰력을 측정하였고, 습윤한 노면에서는 수막으로 인해 노면 마찰력이 크게 감소하여 노면 조직의 영향이 커지므로 습윤 상태에서 노면 마찰력을 측정하였다. 측정 데이터를 통한 분석 결과 노면 조직 변수인 MTD가 증가할수록 BPN(wet)이 선형적으로 증가하는 것이 확인되었으며, EAN에 따라서 BPN이 증가했다가 감소하는 경향이 나타났다. 이는 EAN이 과도하게 많아지면 고무가 침투할 공간이 줄어들어 hysteresis가 감소하기 때문으로 사료된 다. 또한 골재 형상에 따라 노면 마찰력의 최댓값과 optuimum EAN의 변화가 있었다. 이는 골재 형상에 따른 고무 침투 부피의 변화 에 의한 것으로 사료된다. 위의 결과를 통해 MTD, EAN, 골재 형상과 BPN(wet)의 관계를 통계학적으로 분석하여 BPN(wet) 예측 모 델을 제안하였다.
        8.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The increase in particulate matter due to increased air pollutant emissions has become a significant social issue. According to the Ministry of Environment, air pollutants emitted from large-scale businesses in 2022 increased by 12.2% compared to the previous year, indicating that air pollution is accelerating owing to excessive industrialization. In this study, TiO2, which is used to reduce airborne particulate, was used. The TiO2 coating fixation and dynamic pressure coating-type TiO2 fixation methods were used to solve the material peeling phenomenon caused by gravity, which is a limitation when the TiO2 penetration method is applied to a vertical concrete structure along the road. The long-term durability and performance were analyzed through environmental resistance and NOx removal efficiency evaluation experiments. These analyses were then assessed by comparing the NOx removal efficiency with the dynamic pressure permeationtype TiO2 fixation method used in previous studies. METHODS : To evaluate the long-term durability and performance of the TiO2 coating fixation method and dynamic pressure coating TiO2 fixation method for vertical concrete structures, specimens were manufactured based on roadside vertical concrete structures. Environmental resistance tests such as the surface peeling resistance test (ASTM C 672) and freeze-thaw resistance test (KS F 2456) were conducted to evaluate the long-term durability. To evaluate the long-term performance, the NOx removal efficiency of TiO2 concrete owing to road surface deterioration during the environmental resistance test was evaluated using the NOx removal efficiency evaluation equipment based on the ISO 22197-1 standard. This evaluation was compared and analyzed using the dynamic pressure infiltration TiO2 fixation method. RESULTS : The long-term durability of the TiO2 coating fixation and dynamic pressure coating TiO2 fixation methods were evaluated using environmental resistance tests. During the surface peeling resistance test, the TiO2 material degraded and partially detached from the concrete. However, the NOx removal efficiency was ensured by the non-deteriorated and fixed TiO2 material. The long-term performance was confirmed through a freeze-thaw resistance test to evaluate the NOx removal efficiency after 300 cycles of surface deterioration. The results showed that when the TiO2 coating fixation and dynamic pressure infiltration TiO2 fixation methods were applied to vertical concrete structures, the durability of the structure was not compromised. In comparison to the dynamic pressure infiltration TiO2 fixation method, the NOx removal efficiency observed during the surface peeling resistance test was lower, while the freeze-thaw test exhibited notably higher removal efficiency. CONCLUSIONS : To solve the material peeling phenomenon caused by gravity, the long-term durability and performance were evaluated by applying the TiO2 coating fixation and dynamic pressurized coating TiO2 fixation methods to vertical concrete specimens. Long-term durability was confirmed through environmental resistance tests, and long-term utility was secured by measuring the NOx removal efficiency according to surface degradation. These findings show that implementing the TiO2 coating fixation method and dynamic pressure coating TiO2 fixation methods on-site effectively reduce NOx.
        4,600원
        11.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : During the summer of 2018, a heat wave (temperatures > 33°C) lasted for more than 30 days, causing blow-ups at eight different locations in South Korea. The blow-up phenomenon occurred when the internal temperature of the concrete slab increased. Simultaneously, as the concrete slab expands excessively, the length of the end of the slab increases, thus resulting in a lateral compressive force; when the slab cannot withstand this force, it rises or breaks. Blow-up is caused by a variety of factors, including increased temperature and humidity, accumulation of incompressible substances inside discontinuous surfaces, alkali–silica reactions, and aging of the concrete pavement. Several researchers have presented models to forecast blow-ups, such as the A. D. Kerr and G. Yang models, which have been applied to explain the blow-up phenomenon. However, this model has some limitations. This paper discusses a method to overcome these limitations. METHODS : Buckling, the most important theory describing the blow-up phenomenon, was reviewed, and the buckling principle was confirmed. Subsequently, the input variables of the Kerr and Yang models and the mechanism for predicting the occurrence of blow-ups were identified. The PGBA program was used to confirm the lifetime of the expansion joint and the blow-up occurrence time based on the expansion joint spacing to review the limitations of the two studied models. RESULTS : The Kerr and Yang models did not consider variables such as the expansion joint spacing or length of the integrated adjacent slab. In other words, it is necessary to reconsider the appropriateness of blow-up time predictions in relation to changes in expansion joint spacing and slab length. The expansion joint lifetime and blow-up occurrence time were predicted using the PGBA program. It was confirmed that as the expansion joint spacing increases, the expansion joint lifetime decreases. However, the blow-up occurrence time was shown to be the same (equal to 59 years), which is a limitation of the Kerr and Yang models used in the PGBA program. This resulted in a limitation in which variables for the expansion joint spacing cannot be used. CONCLUSIONS : Through blow-up simulation experiments and actual field data, an appropriate slab length should be determined, and a blow-up model should be developed based on the slab length. If a blow-up prediction based on concrete slab length and a blow-up model based on are developed, the blow-up prevention technology will be applied to the appropriate blow-up time and location to avoid traffic accidents and reduce human and property damage.
        4,500원
        12.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Advancements in science and technology caused by industrialization have led to an increase in particulate matter emissions and, consequently, severity of air pollution. Nitrogen oxide (NOx), which accounts for 58% of road transport pollutants, adversely affects both human health and the environment. A test-bed was constructed to determine NOx removal efficiency at the roadside. TiO2, a material used to reduce particulate matter, was used to remove NOx. It was applied to a vertical concrete structure using the dynamic pressurized penetration TiO2 fixation method, which can be easily applied to vertical concrete structures. This study was conducted to evaluate the NOx removal efficiency of the dynamic pressurized-penetration TiO2 fixation method in a test-bed under real roadside conditions. METHODS : A test-bed was constructed in order to determine the NOx removal efficiency using the dynamic pressurized penetration TiO2 fixation method on the roadside. The dynamic pressurized-penetration TiO2 fixation method was applied by installing a vertical concrete structure. NOx was injected into the test-bed using an exhaust gas generator. By installing a shading screen, the photocatalytic reaction of TiO2 was suppressed to a maximum concentration of 1000 ppb along the roadside. The removal efficiency was evaluated by measuring NOx concentrations. In addition, illuminance was measured using an illuminance meter. RESULTS : From the results of the analysis of the NOx removal efficiency in the test-bed which the dynamic pressurized type TiO2 fixation method was applied to, an average removal efficiency ranging from 18% to 40% was achieved, depending on the illuminance. Similarly, according to the results of the evaluation of the NO removal efficiency, an average of removal efficiency ranging from 20% to 62% was achieved. Thus, the NOx removal efficiency increased when the illuminance was high. CONCLUSIONS : From the results of the experiment conducted, the efficiency of NOx removal per unit volume was obtained according to the illuminance of TiO2 concrete along an actual road. Field applicability of the dynamic pressurized-penetration-type TiO2 fixation method to vertical concrete structures along roads was confirmed.
        4,000원
        14.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Roller-compacted concrete pavement (RCCP) is a superstiff-consistency concrete pavement that exhibits excellent strength development owing to a hydration reaction and interlocking aggregates owing to the roller compaction. A zero-slump concrete mixture is generally used. Hence, it is important to control the consistency of the RCCP mixture to prevent the deterioration of the construction quality (such as material separation during paving). The workability of the RCCP is characterized by its consistency and controlled by the Vebe time, whereas a conventional concrete pavement is controlled based on the slump test. The consistency of the RCCP changes over time after concrete mixing owing to delivery, construction time delays, etc. Thus, it is necessary to use the optimum Vebe time to achieve the best construction quality. Therefore, this study aims to develop a Vebe time prediction model for efficiently controlling the consistency of RCCPs according to random time variations. METHODS : A Vebe time prediction model was developed using a multiple linear regression analysis. A dataset of 131 samples was used to develop the model. The collected data consisted of variables with large potential effects on the consistency of the RCCP, such as the water-cement ratio (W/C), sand/aggregate ratio (S/a), water content (ω), water content per unit volume (W), cement (C), fine aggregate (S), coarse aggregate (G), water reducing admixtrue (PNS), air-entraining admixture (AE), delay time (T), air temperature (TEM), and humidity (HUM). In the multiple linear regression analysis, the mentioned parameters were used as the independent variables, and the Vebe time was the dependent variable. The Vebe time prediction models were evaluated by considering the adjusted R2 and p-values. The selection of the model was based on the largest R2 value and an acceptable p-value (p<0.05). RESULTS : The Vebe time prediction model achieved an adjusted R2 value of 64.14% with a significance level (p-value) of less than 0.05. This shows that the predictive model is adequately described for the dependent variable, and that the model is suitable for Vebe time predictions. Moreover, the significance level of the independent variables is less than 0.05, indicating significant effects on the Vebe time (i.e., the dependent variable). CONCLUSIONS : The Vebe time prediction model developed in this study can be used to estimate Vebe times with an R2 of 63.33% between the measured and predicted values. The proposed Vebe time prediction model is expected to be effectively utilized for the quality control of RCCP mixtures. Moreover, it is expected to contribute to achieving good RCCP construction quality.
        4,000원
        15.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Recently, air pollution caused by particulate matter has been worsening. Among the substances generating particulate matter, NOx is the main precursor of particulate matter and is widely distributed in areas with a high volume of traffic. TiO2 has been used as a material for removing NOx through a chemical reaction as a photocatalyst. In this context, the reduction of NOx through TiO2 concrete is proposed. However, the research on the surface deterioration on the performance of TiO2 concrete is not documented yet. Therefore, the objective of this study was to evaluate the long-term durability and NOx removal efficiency of TiO2 concrete by considering the concrete surface deterioration. METHODS : Freezing–thawing resistance test (KS F 2456) and scaling test (ASTM C 672) were performed to investigate the variation in the TiO2 penetration distribution and NOx removal efficiency of TiO2 concrete corresponding to surface deterioration. The long-term durability of TiO2 concrete was evaluated through an environmental resistance test and changes in TiO2 penetration depth and distribution characteristics. In addition, the NOx removal efficiency of TiO2 concrete was evaluated as surface deterioration occurs. RESULTS : As a result of the freeze–thawing resistance test, a relative dynamic elastic modulus of more than 80 % was detected. In addition, a TiO2 penetration depth of 0.3 mm, NOx removal efficiency of 11.2 %, and a 30 % of TiO2 surface prediction mass ratio were achieved after 300 cycles. As a result of visual observation of the scaling test, “0, no scaling” was secured. After 50 cycles of scaling test, the TiO2 penetration depth, NOx removal efficiency, and TiO2 surface prediction mass ratio were 0.3 mm, 36.3 %, and 63 %, respectively. Through the results of the environmental resistance test, the excellent long-term durability and NOx removal efficiency of TiO2 concrete were confirmed. CONCLUSIONS : As a result of the experiment, long-term durability and NOx removal efficiency of TiO2 concrete were secured. The application of TiO2 concrete can be a good alternative with long-term performance and durability.
        4,000원
        18.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The exposed aggregate concrete pavement (EACP) is adopted to achieve low traffic noise and long-term skid resistance in European countries such as Belgium and Germany. In Korea, it is first introduced at the Myeon Cheon field site in 2010. It reduces 3 dB(A) from tire–pavement noise compared with transverse tining. Recent investigations show that EACP can reduce tire–pavement noise by an additional 5 dB(A) compared with transverse tining. In this study, the tire–pavement interaction noise of EACP is compared with that of conventional pavements such as asphalt pavement, next-generation concrete surfaces (NGCS), and transverse tining. METHODS : EACP is constructed at two field sites on the SOC research center and Yeo-Ju test road to compare the noise level via close proximity noise measurement. In addition, the noise is measured using two vehicle type based on vehicle speeds of 60, 80, and 100 km/h. RESULTS : The results of noise measurement obtained from the SOC research center are as follows: Porous asphalt pavement 92.8 dB(A), HMA 96. dB(A), transverse tining 100.1 dB(A), and 8 mm EACP 97 dB(A) at a driving speed of 80 km/h. For the case of the Yeo-Ju test road. The noise levels at a driving speed of 80 km/h are as follows: 6 mm EACP, 93.6 dB(A); asphalt grooving pavement, 94.72 dB(A); 8 mm EACP, 95.2 dB(A); NGCS, 95.2 dB(A); transverse tining, 104.1 dB(A). CONCLUSIONS : The result of noise measurement of two sites in the SOC research center and test road shows that the noise level of the 6 mm EAC is lower than that of concrete pavement, such as tining and NGCS, and similar to that of asphalt pavement. In addition, the noise level of the 8 mm EAC is similar to that of the NGCS pavement. The noise reduction effect of the EAC is greater when small-sized coarse aggregates with lower flat and elongation ratios are used.
        4,000원
        1 2 3 4 5