검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2009.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of the initial packing structure on the plasticity of amorphous alloys was investigated by tracing the structural evolution of the amorphous solid inside a shear band. According to the molecular dynamics simulations, the structural evolution of the amorphous solids inside the shear band was more abrupt in the alloy with a higher initial packing density. Such a difference in the structural evolution within the shear band observed from the amorphous alloys with different initial packing density is believed to cause different degrees of shear localization, providing an answer to the fundamental question of why amorphous alloys show different plasticity. We clarify the structural origin of the plasticity of bulk amorphous alloys by exploring the microstructural aspects in view of the structural disordering, disorder-induced softening, and shear localization using molecular dynamics simulations based on the recently developed MEAM (modified embedded atom method) potential.
        4,000원
        2.
        2009.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A series of experiments demonstrated that an addition of Ag into (Cu0.5Zr0.5)100-xAgx amorphous alloys alters the plasticity of the alloys in a systematic manner. Energy dispersive x-ray spectroscopy (EDS) conducted on the (Cu0.5Zr0.5)100-xAgx alloys exhibited the presence of compositional modulation, indicating that compositional separation had occurred. The presence of compositional modulation was also validated using a combined technique of molecular dynamics and Monte Carlo simulation. In this study, the effect of Ag on the compositional separation in (Cu0.5Zr0.5)100-xAgx bulk amorphous alloys was investigated to understand the role played by the phase-separating element on the plasticity of the amorphous alloys.
        4,000원