논문 상세보기

Tensile Properties and Thermal Stability of Cellulose Nanofibril/Clay Nanocomposites

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/240793
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
경북대학교 농업생명과학대학 (College of Agriculture and Life Sciences)
초록

This work attempted to fabricate organic/inorganic nanocomposite by combining organic cellulose nanofibrils (CNFs), isolated by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation of native cellulose with inorganic nanoclay. The morphology and dimension of CNFs, and tensile properties and thermal stability of CNF/clay nanocomposites were characterized by transmission electron microscope (TEM), tensile test, and thermogravimetry (TG), respectively. TEM observation showed that CNFs were fibrillated structure with a diameter of about 4.86±1.341 nm. Tensile strength and modulus of the hybrid nanocomposite decreased as the clay content of the nanocomposite increased, indicating a poor dispersion of CNFs or inefficient stress transfer between the CNFs and clay. The elongation at break increased at 1% clay level and then continuously decreased as the clay content increased, suggesting increased brittleness. Analysis of TG and derivative thermogravimetry (DTG) curves of the nanocomposites identified two thermal degradation peak temperatures (Tp1 and Tp2), which suggested thermal decomposition of the nanocomposites to be a two steps-process. We think that Tp1 values from 219.6℃ to 235℃ resulted from the sodium carboxylate groups in the CNFs, and that Tp2 values from 267℃ to 273.5℃ were mainly responsible for the thermal decomposition of crystalline cellulose in the nanocomposite. An increase in the clay level of the CNF/clay nanocomposite predominately affected Tp2 values, which continuously increased as the clay content increased. These results indicate that the addition of clay improved thermal stability of the CNF/clay nanocomposite but at the expense of nanocomposite’s tensile properties.

저자
  • Byung-Dae Park(Department of Wood Science and Technology, Kyungpook National University) Corresponding Author
  • Adya P. Singh(Department of Wood Science and Technology, Kyungpook National University)
  • In Chul Um(Department of Bio-fibers and Materials Science, Kyungpook National University)