검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 184

        1.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effective cooling strategies are critical for cultivating high-quality ornamental plants during the summer. The fan-and-pad cooling system reduces greenhouse temperatures by drawing air through wet pads, which humidify and cool the air, aided by fans on the opposite side. However, the paper-based pads (corrugated cellulose) used in this system have limited durability and degrade with prolonged use. Nanocomposite hydrogels, with their polymer-based structure, can absorb and retain moisture through swelling, presenting a promising alternative. This study examines the application of nanocomposite hydrogels, focusing on their hygroscopic properties and cooling efficiency under various temperatures and wind speeds. When treated with lithium chloride solutions at 25%, 50%, 75%, and 100% saturation, higher LiCl concentrations reduced weight but increased swelling capacity. Optimal cooling effects were achieved with wind speeds of 1.0 m/s at 25°C and 1.5 m/s at 35°C, with greater efficiency observed at lower wind speeds. These findings suggest that integrating nanocomposite hydrogels into cooling pads could enhance durability and reduce maintenance compared with conventional paper pads.
        4,000원
        2.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene-based solar cells and supercapacitors integrated into photosupercapacitors represent a pioneering advancement. These devices leverage the exceptional properties of graphene, such as high conductivity and large surface area, to enhance both solar energy conversion and energy storage. The integration of these technologies into photosupercapacitors creates a multifunctional device capable of harnessing solar energy and storing it efficiently. This innovative approach holds promise for sustainable and versatile energy solutions, marking a significant step towards developing efficient and compact energy storage systems. This integration addresses the intermittent nature of solar power generation by providing a continuous and reliable power supply through energy storage. Supercapacitors are one such energy device with a high-power density and excellent specific capacitance which is integrated will a dye-sensitized solar cell (DSSC) comprising a single system of photosupercapacitor. A novel electrode material of NiO/CuO/Co3O4/rGO was synthesized which serves as the Pt-free counter electrode of DSSC and working or storage electrode of supercapacitor later was used as the intermediate electrode and storage electrode of a photosupercapacitor. The integrated photosupercapacitor device had a photovoltage of 0.81 V with arealspecific capacitance, energy and power density of 190.12 mF cm− 2, 17.325 μW h cm− 2 and 0.162 mW cm− 2, respectively. The device self-discharged in 385 s with an overall conversion efficiency of 2.17%, resulting in a self-charged energy device.
        4,200원
        9.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon fibers of polyacrylonitrile (PAN) type were coated with nickel nanoparticles using a chemical reduction method in alkaline hydrazine bath. The carbon fibers were firstly heated at 400 °C and then chemically treated in hydrochloric acid followed by nitric acid to clean, remove any foreign particles and functionalized its graphitic surfaces by introducing some functional groups. The functionalized carbon fibers were coated with nickel to produce 10 wt% Cf/Ni nanocomposites. The uncoated heat treated and the nickel coated carbon fibers were investigated by SEM, EDS, FTIR and XRD to characterize the particle size, morphology, chemical composition and the crystal structure of the investigated materials. The nickel nanoparticles were successfully deposited as homogeneous layer on the surface of the functionalized carbon fibers. Also, the deposited nickel nanoparticles have quazi-spherical shape and 128–225 nm median particle size. The untreated and the heat treated as well as the 10 wt% Cf/Ni nanocomposite particles were further reinforced in ethylene vinyl acetate (EVA) polymer separately by melt blending technique to prepare 0.5 wt% Cf-EVA polymer matrix stretchable conductive composites. The microstructures of the prepared polymer composites were investigated using optical microscope. The carbon fibers as well as the nickel coated one were homogenously distributed in the polymer matrix. The obtained samples were analyzed by TGA. The addition of the nickel coated carbon fibers to the EVA was improved the thermal stability by increasing the thermal decomposition temperature Tmax1 and Tmax2. The electrical and the mechanical properties of the obtained 10 wt% Cf/Ni nanocomposites as well as the 0.5 wt% Cf-EVA stretchable conductive composites were evaluated by measuring its thermal stability by thermogravimetric analysis (TGA), electrical resistivity by four probe method and tensile properties. The electrical resistivity of the fibers was decreased by coating with nickel and the 10 wt% Cf/Ni nanocomposites has lower resistivity than the carbon fibers itself. Also, the electrical resistivity of the neat EVA is decreased from 3.2 × 1010 to 1.4 × 104 Ω cm in case of the reinforced 0.5 wt% Cf/Ni-EVA polymer composite. However, the ultimate elongation and the Young’s modulus of the neat EVA polymer was increased by reinforcing with carbon fibers and its nickel composite.
        4,900원
        10.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해당 연구는 산업 폐수에서 염료를 효율적으로 제거하기 위한 고급 박막 나노복합체(TFN) 기반 나노여과막을 개 발하여 효과적인 폐수 처리 방법을 제시합니다. 최근 연구의 동향을 보면, 나노카본, 실리카 나노스피어, 금속-유기 프레임워 크(MOF) 및 MoS2와 같은 혁신적인 재료를 포함하는 TFN 막의 제조에 중점을 둡니다. 주요 목표는 염료 제거 효율을 향상 시키고 오염 방지 특성을 개선하며 염료/염 분리에 대한 높은 선택성을 유지하는 것입니다. 이 논문은 넓은 표면적, 기계적 견고성 및 특정 오염 물질 상호 작용 능력을 포함하여 이러한 나노 재료의 뚜렷한 이점을 활용하여 현재 나노여과 기술의 제 한을 극복하고 물 처리 문제에 대한 지속 가능한 솔루션을 제공하는 것을 목표로 합니다.
        4,000원
        11.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have intended and preparation of hierarchically absorbent materials were covered with a NiMn2O4 and acts as a catalyst for azo dye degradation. The polyaromatic-based (PA) absorbent compounds were initially constructed by bromomethylated aromatic hydrocarbons which undergo self-polymerization in presence of ZnBr as a reagent and cross linker is bromomethyl methyl ether. The absorbent black materials with a 3D network were prepared by direct carbonization and activation of the as-prepared PA. The hydrothermal method was adapted for the preparation of carbon hybrid material C@NiMn2O4 powder's catalytic activity is effective in reducing p-nitrophenol to p-aminophenol and decolorizing carbon-based dyes like methyl orange (MO), methyl yellow (MY), and Congo red (CR) in aqueous media at 25 °C when NaBH4 is added. UV–visible spectroscopy was used to analyze the dyes' breakdown at regular interval.
        4,000원
        12.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Integration of noble metals on graphene is renowned for their catalytic and antioxidant prowess. However, utilization of toxic chemicals in the synthesis creates environmental pollution and poisonous nature of chemically synthesized materials. To address this, an economical and eco-friendly method for synthesizing graphene-gold (BRG-Au) nanocomposite by anchoring gold nanoparticles (Au NPs) onto reduced graphene oxide sheets using betel leaf extract as a reducing and stabilizing agent is presented. Comprehensive structural characterizations through UV–Visible, Raman, FT-IR, and XRD analyses confirm the successful formation of the BRG-Au nanocomposite. Morphological assessments utilizing FE-SEM and TEM techniques revealed the presence of transparent, twinkling graphene sheets embellished with 20 to 60 nm of Au NPs in various shapes, including spherical, triangular, pentagonal, circular, and trapezoids. The catalytic and antioxidant activities of the BRG-Au nanocomposite were thoroughly evaluated. In catalytic trials, the nanocomposite exhibited remarkable efficiency in the reduction of 4-nitrophenol to 4-aminophenol, accomplishing this transformation within a mere 30 min during the initial cycle and maintaining stable catalytic performance over three consecutive cycles. Additionally, antioxidant analyses employing Total Antioxidant Activity and 2,2-diphenyl-1-picrylhydrazyl methods demonstrated that BRG-Au nanocomposite possessed equal or superior antioxidant activity than the ascorbic acid standard. This research thus underscores the promising potential of environmentally benign synthesis method for graphene-gold nanocomposite with enhanced catalytic and antioxidant properties.
        4,300원
        14.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Herein, the present work focuses on the effective counter electrode for dye-sensitized solar cells. The bottom–up approach was adapted to synthesize Mn2O3 nanorods via the hydrothermal method and the reduced graphene oxide was merged with Mn2O3 to prepare a nanocomposite. The prepared nanocomposites were subjected to physio-chemical and morphological characterizations which revealed the crystalline nature of Mn2O3 nanorods. The purity level rGO was characterized using the Raman spectrum and the Fourier transform infrared spectroscopy employed to find the functional groups. The morphological micrographs were visualized using SEM and TEM and the high aspect ratio Mn2O3 nanorods were observed with 5–7 nm and supported by rGO sheets. The electrocatalytic nature and corrosion properties of the counter electrode towards the iodide electrolyte were studied using a symmetrical cell. The as-synthesized nanocomposites were introduced as counter electrodes for DSSC and produced 4.11% of photoconversion efficiency with lower charge transfer resistance. The fabricated DSSC devices were undergone for stability tests for indoor and outdoor atmospheres, the DSSC stability showed 93% and 80% respectively for 150 days.
        4,000원
        15.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bortezomib (BTZ) and dasatinib (DA) are two substantial anti-cancer agents with side effects on the human body. In this research, we fabricated a novel electrochemical sensor modified by CuFe2O4/ SmVO4 nanocomposite and 1-ethyl-3-methylimidazolium chloride (1E3MC) as an ionic liquid (IL) ( CuFe2O4/SmVO4/IL/CPE) for coinciding investigation of BTZ and DA for the first time. The CuFe2O4/ SmVO4 synthesized were determined and certified through field-emission scanning electron microscopy (FE-SEM), energy diffraction X-ray (EDX), and X-ray diffraction (XRD). The capability of the sensor was investigated by different electrochemical techniques such as cyclic voltammetry (CV), chronoamperometry (CHA), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The attained data showed that the oxidation signal of bortezomib and dasatinib promoted as an innovative electrochemical sensor. After optimization of the conditions using this sensor at pH 7.0, the oxidation signal of bortezomib and dasatinib showed to be linear with drug concentrations in the range of 0.09–90 μM and 100–500 μM with a detection limit of 5.4 nM and 7.0 μM, respectively, using differential pulse voltammetry method. The values of D and electro-transfer coefficient (α) achieved 2.5 × 10− 5 cm2 s− 1 and 0.99, respectively. The proposed electrochemical sensor exhibited acceptable selectivity and sensitivity for simultaneous detection of bortezomib and dasatinib in pharmaceutical and biological samples.
        4,000원
        16.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The untreated effluent dropping into the environment from various textile industries is a major issue. To solve this problem, development of an efficient catalyst for the degradation of macro dye molecules has attracted extensive attention. This work is mainly focused on the synthesis of nickel–manganese sulfide decorated with rGO nanocomposite (Ni–Mn-S/rGO) as an effective visible photocatalyst for degradation of textile toxic macro molecule dye. A simple hydrothermal method was used to synthesize Ni–Mn-S wrapped with rGO. The prepared composites were characterized using various techniques such as X-ray diffraction (XRD), high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infra-red spectrometer (FTIR), and ultra violet–visible (UV–Vis) spectroscopy. The photocatalytic performance of nickel sulfide (NiS), manganese sulfide (MnS), nickel–manganese sulfide (Ni–Mn-S), and Ni–Mn-S/rGO nanocomposite was assessed by analyzing the removal of acid yellow (AY) and rose bengal (RB) dyes under natural sun light. Among these, the Ni–Mn-S/rGO nanocomposite showed the high photocatalytic degradation efficiency of AY and RB dyes (20 ppm concentration) with efficiency at 96.1 and 93.2%, respectively, within 150-min natural sunlight irradiation. The stability of photocatalyst was confirmed by cycle test; it showed stable degradation efficiency even after five cycles. This work confirms that it is an efficient approach for the dye degradation of textile dyes using sulfide-based Ni–Mn-S/rGO nanocomposite.
        4,600원
        17.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Photoanode optimization is a fascinating technique for enlightening the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). In this present study, V2O5/ ZnO and reduced graphene oxide (rGO)-V2O5/ZnO nanocomposites (NCs) were prepared by the solid-state technique and used as photoanodes for DSSCs. A wet chemical technique was implemented to generate individual V2O5 and ZnO nanoparticles (NPs). The structural characteristics of the as-synthesized NCs were investigated and confirmed using powder X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and Scanning electron microscope (SEM) with energy dispersive X-ray (EDX) analysis. The average crystallite size (D) of the as-synthesized V2O5/ ZnO and rGO-V2O5/ZnO NCs was determined by Debye-Scherer’s formula. The bandgap (eV) energy was calculated from Tauc’s plots, and the bonding nature and detection of the excitation of electrons were investigated using the Ultra violet (UV) visible spectra, Fourier Transform infrared (FTIR) and photoluminescence (PL) spectral analysis. Electrical studies like Hall effect analysis and the Nyquist plots are also described. The V2O5/ ZnO and rGO-V2O5/ZnO NCs based DSSCs exhibited 0.64% and 1.27% of PCE and the short circuit current densities and open circuit voltages improved from 7.10 to 11.28 mA/cm2 and from 0.57 to 0.68 V, respectively.
        4,300원
        18.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pharmaceutical products occurring in freshwater bodies create numerous problems for the water bodies owing to their bio-toxic nature. In order to remove such pharmaceutical pollutants, a novel Er-doped Bi4O5Br2/ g-C3N5 nanocomposite was prepared by one-pot synthesis and applied for the photocatalytic removal process. The Er ions doped on the surface of Bi4O5Br2/ g-C3N5 nanocomposite exhibited 97% degradation of tetracycline in 60 min under visible light irradiation, which is higher than pure g-C3N5 and Bi4O5Br2 photocatalysts. The improved photocatalytic properties are attributed to the outstanding visible light harvesting capacity and quick charge carrier separation efficiency which greatly reduced the recombination rate in the heterojunctions. Based on radical trapping experiments, the •O2 −, h+ and •OH radicals played a prominent role in the photodegradation reactions under visible light. Finally, the ternary Er-doped Bi4O5Br2/ g-C3N5 nanocomposite is effectively recyclable with quite a stable photocatalytic removal rate. This work enables a new perspective on the rational design of rare-earth-based nanocomposites for various pharmaceutical pollutants treatment processes.
        4,000원
        1 2 3 4 5