논문 상세보기

바디 제스처 인식을 위한 기초적 신체 모델 인코딩과 선택적/비동시적 입력을 갖는 병렬 상태 기계 KCI 등재

Primitive Body Model Encoding and Selective / Asynchronous Input-Parallel State Machine for Body Gesture Recognition

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/240916
서비스가 종료되어 열람이 제한될 수 있습니다.
로봇학회논문지 (The Journal of Korea Robotics Society)
한국로봇학회 (Korea Robotics Society)
초록

Body gesture Recognition has been one of the interested research field for Human-Robot Interaction(HRI). Most of the conventional body gesture recognition algorithms used Hidden Markov Model(HMM) for modeling gestures which have spatio-temporal variabilities. However, HMM-based algorithms have difficulties excluding meaningless gestures. Besides, it is necessary for conventional body gesture recognition algorithms to perform gesture segmentation first, then sends the extracted gesture to the HMM for gesture recognition. This separated system causes time delay between two continuing gestures to be recognized, and it makes the system inappropriate for continuous gesture recognition. To overcome these two limitations, this paper suggests primitive body model encoding, which performs spatio/temporal quantization of motions from human body model and encodes them into predefined primitive codes for each link of a body model, and Selective/Asynchronous Input-Parallel State machine(SAI-PSM) for multiple-simultaneous gesture recognition. The experimental results showed that the proposed gesture recognition system using primitive body model encoding and SAI-PSM can exclude meaningless gestures well from the continuous body model data, while performing multiple-simultaneous gesture recognition without losing recognition rates compared to the previous HMM-based work.

저자
  • 정명진(Electrical Engineering, KAIST) | Chung Myung-Jin Corresponding author
  • 이원형(Electrical Engineering, KAIST) | Lee Won-Hyong
  • 김우현(Electrical Engineering, KAIST) | Kim Woo-Hyun
  • 박정우(Electrical Engineering, KAIST) | Park Jeong-Woo
  • 김주창(Electrical Engineering, KAIST) | Kim Juchang