Sulphur deficiency has become widespread over the past several decades in most of the agricultural area. Oilseed rape (Brassica napus L.) is a very sensitive to S limitation which is becoming reduction of quality and productivity of forage. Few studies have assessed the sulphur mobilization in the source-sink relationship, very little is known about the regulatory mechanism in interaction between sulphur and nitrogen during the short-term sulphur deficiency. In this study, therefore, amount of sulphur and nitrogen incorporated into amino acids and proteins as affected by different S-supplied level (Control: 1 mM SO4 2 , S-deficiency: 0.1 mM SO4 2 , and S-deprivation: 0 mM SO4 2 ) were examined. The amount of sulphur in sulphate (S-sulphate) was significantly decreased by 25.8% in S-deprivation condition, compare to control, but not nitrogen in nitrate (N-nitrate). The markedly increase of sulphur and nitrogen incorporated amino acids (S-amino acids and N-amino acids) was observed in both S-deficiency and S-deprivation treatments. The amount of nitrogen incorporated proteins (N-protein) was strongly decreased as sulphur availability while the amount of sulphur incorporated into proteins (S-protein) was not affected. A highly significant (p<0.001) relationship between S-sulphate and S-amino acid was observed whereas the increase of N-amino acids is closely associated with decrease of N-proteins. These data indicate that increase of sulphur and nitrogen incorporated into amino acids was from different nitrogen and sulphur metabolites, respectively.