Many researches and analyses have been focused on industrial accidents in order to predict and reduce them. As a similar endeavor, this paper is to develop an expert system for prevention of industrial accidents. Although various previous studies have been performed to prevent industrial accidents, these studies only provide managerial and educational policies using frequency analysis and comparative analysis based on data from past industrial accidents. As an initial step for the purpose of this study, this paper provides a comparative analysis of 4 kinds of algorithms including CHAID, CART, C4.5, and QUEST. Decision tree algorithm is utilized to predict results using objective and quantified data as a typical technique of data mining. Enterprise Miner of SAS and Answer Tree of SPSS will be used to evaluate the validity of the results of the four algorithms. The sample for this work was chosen from 10,536 data related to manufacturing industries during three years(2002~2004) in korea. The initial sample includes a range of different businesses including the construction and manufacturing industries, which are typically vulnerable to industrial accidents.