칼라 이미지 스케일은 칼라 전문가들의 지식에 의해 획득되고, 형용사와 대응되는 칼라(들)을 선택하기 위해 동일한 형용사 이미지 스케일들에서 형용사들과 칼라를 표현한다. 이들은 이미지 스케일을 얻기 위한 실험과 통계분석의 어려움 때문에 일반적으로, 단지 제한된 수의 칼라들만이 이미지 스케일에 위치한다. 이는 칼라를 선택하는 과정을 비전문가에게 어렵게 만든다. 본 논문에서는 이미지 스케일에 따라 연속적인 칼라를 제공하는 퍼지 K-근접 이웃 보간 방법에 기초를 둔 칼라 이미지 스케일의 보간 방법을 제안한다. 실험의 결과들은 보간된 이미지 스케일은 칼라 선택 과정에 있어 실용적으로 유용하게 사용될 수 있을 것이라 본다.
Color image scale captures the knowledge of colorists and represents both adjectives and colors in the same adjective image scales in order to select color(s) corresponding to an adjective. Due to the difficulty of psychological experiment and statistical analysis, in general, only a limited number of colors are located in the color image scales. This can make color selection process hard especially to non-expert. In this paper, we propose an interpolation of color image scale based on the fuzzy K-nearest neighbor method, which provides continuous colors according to the coordinates of the image scales. The experimental results show that the interpolated image scales can be practically useful for color selection process.