본 논문에서는 신경망 SOM학습을 이용하여 피험자의 각성수준을 높은각성과 낮은각성으로 자동인식하는 것을 제안한다. 각성수준의 자동인식 단계는 세 단계로 구성된다 첫 번째는 ECG 측정 및 분석단계로 슈팅게임을 플레이하는 피험자를 ECG로 측정하고, SOM 학습을 하기 위해 특징을 추출한다. 두 번째는 SOM 학습 단계로 특징이 추출된 입력벡터들을 학습한다. 마지막으로 각성인식 단계는 SOM 학습이 완료된 후에 새로운 입력벡터가 들어왔을 때, 피험자의 각성수준을 인식한다. 실험결과는 각성수준의 SOM 학습결과와 새로운 입력벡터가 들어왔을 때 각성수준의 인식결과, 그리고 각성수준을 수치와 그래프로 보여준다. 마지막으로 SOM의 평가는 기존연구의 감성평가 결과와 SOM의 자동인식 결과를 순차적으로 비교하여 평균 86%로 분석되었다. 본 연구를 통해서 SOM을 이용하여 피험자마다 다른 각성수준을 자동인식 할 수 있었다.
The purpose of the study was to suggest automatic recognition of the subject's level of arousal into high arousal and low arousal with neural network SOM learning. The automatic recognition in the level of arousal is composed of three stages. First, it is a stage of ECG measurement and analysis. It measures the subject playing a shooting game with ECG and extracts characteristics for SOM learning. Second, it is a stage of SOM learning. It learns input vectors extracting characteristics. Finally, it is a stage of arousal recognition which recognize the subject's level of arousal when new vectors are input after SOM learning is completed. The study expresses recognition results in the level of arousal and the level of arousal in numerical value and graph when SOM learning results in the level of arousal and new vectors are input. Finally, SOM evaluation was analyzed average 86% by comparing emotion evaluation results of the existing research with automatic recognition results of SOM in order. The study could experience automatic recognition with other levels of arousal by each subject with SOM.