본 연구는 불특정 다수의 도로이용자들이 경로우회 시 갖는 의사결정과정속에 내포된 비선형성과 불확실성을 고려한 정도 있는 모형구축으로 주요 우회결정요인을 분석하는 것이 주요 목적이다. 이를 위하여 고속도로 및 국도를 이용하는 운전자를 대상으로 우회여부에 관련된 SP조사를 실시하였고, 조사결과에 대하여 의사결정나무와 신경망이론의 결합된 모형을 구축하여 운전자 우회결정요인을 분석하였다. 분석결과 운전자 우회여부결정에 영향을 미치는 요인은 우회도로 인지여부, 교통정보 신뢰도 및 이용빈도, 경로전환빈도, 나이순으로 나타났다. 또한 오분류표를 통한 기존 모형과의 예측력의 비교결과 결합된 모형의 오분류율이 8.7%로 기존 모형인 로짓모형 12.8%, 의사결정나무 단독 모형 13.8%와 비교했을 때 가장 예측력이 높은 것으로 나타나 운전자 우회결정요인 분석에 관한 모형의 적용 타당성을 확인할 수 있었다. 본 연구의 결과는 향후 교통량 분산효과와 도로망 효율 증대를 위한 효과적인 우회관리전략 수립 시 기초 자료로 활용가능하리라 사료된다.
This study's purpose is to analyse factors of determination about detouring for makinga standard model in regard of unfavorableness and uncertainty when unspecified individual recipients make a decision at the time of course detour. In order to achieve this, we surveyed SP investigation whether making a detour or not for drivers as a target who take a high way and National highway. Based on this result, we analysed detour determination factors of drivers, establishing a combination model of Decision Tree and Neural Network model. The result demonstrates the effected factors on drivers' detour determination are in ordering of the recognition of alternative routevs, reliable and frequency of using traffic information, frequency of transition routes and age. Moreover, from the outcome in comparison with an existing model and prediction through undistributed data, the rate of combination model 8.7% illustrates the most predictable way in contrast with logit model 12.8%, and Individual Model of Decision Tree 13.8% which are existed. This reveals that the analysis of drivers' detour determination factors is valid to apply. Hence, overall study considers as a practical foundation to make effective detour strategies for increasing the utility of route networking and dispersion in the volume of traffic from now on.