검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 73

        1.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The metal bush assembling process is a process of inserting and compressing a metal bush that serves to reduce the occurrence of noise and stable compression in the rotating section. In the metal bush assembly process, the head diameter defect and placement defect of the metal bush occur due to metal bush omission, non-pressing, and poor press-fitting. Among these causes of defects, it is intended to prevent defects due to omission of the metal bush by using signals from sensors attached to the facility. In particular, a metal bush omission is predicted through various data mining techniques using left load cell value, right load cell value, current, and voltage as independent variables. In the case of metal bush omission defect, it is difficult to get defect data, resulting in data imbalance. Data imbalance refers to a case where there is a large difference in the number of data belonging to each class, which can be a problem when performing classification prediction. In order to solve the problem caused by data imbalance, oversampling and composite sampling techniques were applied in this study. In addition, simulated annealing was applied for optimization of parameters related to sampling and hyper-parameters of data mining techniques used for bush omission prediction. In this study, the metal bush omission was predicted using the actual data of M manufacturing company, and the classification performance was examined. All applied techniques showed excellent results, and in particular, the proposed methods, the method of mixing Random Forest and SA, and the method of mixing MLP and SA, showed better results.
        4,000원
        2.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        군사학은 급변하는 안보환경과 국제정세의 변화, 4차산업혁명시대의 무기체계 발전과 저출산에 따른 병역제도 등의 사회적 관심이 증대되 고 있다. 따라서 본 연구는 빅데이터를 활용한 텍스트마이닝 기법으로 군사학의 학술연구 동향과 사회적 인식을 분석하여 시사점을 제시하는 데 있다. 연구 결과 학술연구 동향은 주변국 관계, 무기체계, 방위산업, 인공지능 등이 중점을 이루었지만, 사회적 인식은 대학교와 군사학과, 장교 등의 관심으로 차이점을 보였다. 군사학 발전을 위해 연구 중심의 역량과 환경을 구축하고, 융·복합적 연구와 지역사회와 연계한 산학협 력 체계구축 및 국민 참여를 통한 학술 세미나 및 통합연구 등이 요구 되었다.
        5,500원
        3.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to explore the change in the market issues on HMR (Home Meal Replacements) using local foods after the COVID-19 outbreak. Online text data were collected from internet news, social media posts, and web documents before (from January 2016 to December 2019) and after (from January 2020 to November 2022) the COVID- 19 outbreak. TF-IDF analysis showed that ‘Trend’, ‘Market’, ‘Consumption’, and ‘Food service industry’ were the major keywords before the COVID-19 outbreak, whereas ‘Wanju-gun’, ‘Distribution’, ‘Development’, and ‘Meal-kit’ were main keywords after the COVID-19 outbreak. The results of topic modeling analysis and categorization showed that after the COVID-19 outbreak, the ‘Market’ category included ‘Non-face-to-face market’ instead of ‘Event,’ and ‘Delivery’ instead of ‘Distribution’. In the ‘Product’ category, ‘Marketing’ was included instead of ‘Trend’. Additionally, in the ‘Support’ category, ‘Start-up’ and ‘School food service’ appeared as new topics after the COVID-19 outbreak. In conclusion, this study showed that meaningful change had occurred in market issues on HMR using local foods after the COVID-19 outbreak. Therefore, governments should take advantage of such market opportunity by implementing policy and programs to promote the development and marketing of HMR using local foods.
        4,600원
        4.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 GPS에 기반한 위치 수집 기술의 발전과 스마트폰과 같은 GPS를 탑재한 디바이스의 폭발적인 증가로 사람, 차량, 선박, 항공체와 같은 움직이는 물체의 지리적 위치에 대한 엄청난 양의 데이터가 실시간으로 수집되고 있다. 이는 사물의 움직임과 관련된 중요한 학문적 및 실용적 가치를 가지고 있다. 이와 같은 데이터를 분석하기 위한 데이터 마이닝 방법 또한 함께 발전하고 있으며 연구자들은 궤적 데이터를 활용하여 도시에서 일어나는 이동 현상과 도시를 구성하는 장소 간의 관계 등을 탐색함으로써 다양한 도시 문제에 대한 해결방안을 제시하고 있다. 궤적은 다양한 물체의 움직임을 추적할 수 있는 만큼 그 활용 분야와 목적 역시 매우 다양하여 도시 계획, 교통, 행동생태학, 공공안전, 이상 및 위반 탐지, 감시 등과 같은 분야에서 널리 활용되고 있다. 특히 최근 데이터 마이닝 방법론과 딥러닝 기술의 발전으로 궤적 데이터 분석에 다양한 분석방법이 융합적으로 접목되어 의미 있는 연구결과 도출되고 있어 이에 대한 체계적 분석이 필요하다. 이러한 배경하에 본 연구는 궤적 데이터를 활용한 국내외 약 150여 편의 연구를 응용분야 및 활용방법론 별로 구분하고, 응용분야별, 궤적 데이터 분석 방법론별 최근 동향을 분석하였다. 이는 향후 궤적 데이터에 적용가능한 방법론 탐색, 궤적 데이터 분석과 관련된 구체적 사례 탐색, 궤적 데이터를 활용한 응용서비스 도출의 자료로 활용될 수 있을 것으로 사료된다.
        5,700원
        5.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        전세계적으로 대퇴사 시대를 겪으며 조직 구성원을 유지하는 것이 실무 및 현장의 중요한 주제가 되었 다. 본 연구는 텍스트 마이닝 분석 방법의 일환인 토픽 모델링 및 키워드 네트워크 분석을 활용하여 국내 외 다양한 기업 구성원의 퇴사 원인을 밝히고 조직이 인재를 유지할 수 있는 전략을 제시하고자 한다. 기업은 조직의 성장을 위하여 필요한 인재를 유지하기 위한 노력을 지속하고 있으나 평생 고용의 개념이 사라진 오늘날 구성원들의 퇴사가 빈번하다. 그리고 생산가능인구 감소에 따라 기업에 조직 구성원 유입 이 제한될 것으로 예측할 때 인재 유지 주제와 관련한 연구의 중요성은 더욱 강조된다. 또한 COVID-19 팬데믹을 경험하며 구성원들의 일에 대한 관점이 변화함에 따라 이에 대응하여 기업의 인재 유지를 가능 하게 하는 주요 요소를 밝혀내는 것이 매우 중요하다. 본 연구는 국내외 소셜 미디어 서비스인 잡플래닛 과 글래스도어의 데이터를 토픽 모델링 분석하여 조직 구성원들이 인식하는 기업의 주요 장단점을 살펴봤다. 그리고 키워드 네트워크 분석을 통해 해당 요인을 시각화하여 조직에서 인재를 유지하는 요인을 규명하였다. 본 연구는 방대한 양의 데이터를 텍스트 마이닝 기법으로 분석하여 국내 기존 연구에서 아직 다루지 못한 대퇴사 시대의 주요 원인을 밝혔다는 점에서 이론적 함의를 갖는다. 또한 본 연구 결과를 바탕으로 최근 현장 및 학계에서 중요하게 대두되는 대퇴사 시대의 인재 유지 대응 전략을 제시한다는 점에서 실무적 의의가 있다.
        6,000원
        8.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this paper is to understand the key factors for efficient maintenance of rapidly aging facilities. Therefore, the safety inspection/diagnosis reports accumulated in the unstructured data were collected and preprocessed. Then, the analysis was performed using a text mining analysis method. The derived vulnerabilities of tunnel facilities can be used as elements of inspections that take into account the characteristics of individual facilities during regular inspections and daily inspections in the short term. In addition, if detailed specification information and other inspection results(safety, durability, and ease of use) are used for analysis, it provides a stepping stone for supporting preemptive maintenance decision-making in the long term.
        4,000원
        11.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, with the development of technologies for the fourth industrial revolution, convergence and complex technology are being applied to aircraft, electronic home appliances and mobile devices, and the number of parts used is increasing. Increasing the number of parts and the application of convergence technologies such as HW (hardware) and SW (software) are increasing the No Defect Found (NDF) phenomenon in which the defect is not reproduced or the cause of the defect cannot be identified in the subsequent investigation systems after the discovery of the defect in the product. The NDF phenomenon is a major problem when dealing with complex technical systems, and its consequences may be manifested in decreased safety and dependability and increased life cycle costs. Until now, NDF-related prior studies have been mainly focused on the NDF cost estimation, the cause and impact analysis of NDF in qualitative terms. And there have been no specific methodologies or examples of a working-level perspective to reduce NDF. The purpose of this study is to present a practical methodology for reducing NDF phenomena through data mining methods using quantitative data accumulated in the enterprise. In this study, we performed a cluster analysis using market defects and design-related variables of mobile devices. And then, by analyzing the characteristics of groups with high NDF ratios, we presented improvement directions in terms of design and after service policies. This is significant in solving NDF problems from a practical perspective in the company.
        4,200원
        12.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 데이터 마이닝 기반 의사결정 나무 분석을 적용해 Z세대 스포츠 소비 스타일을 탐색 하여 Z세대가 주도할 스포츠 소비 시장을 예측하기 위한 기초자료를 제공하고자 했다. 따라서 Z세대 중 만 19세 이상 남성 및 여성을 표본으로 선정해 본 조사를 실시했으며, 총 429명의 자료를 최종 분석에 사용했다. 자료처리는 SPSS statistics(ver. 21.0) 프로그램을 이용하여 빈도분석, 탐색적 요인분석, 재검사 신 뢰도 및 신뢰도 분석, 의사결정 나무 분석을 실시했다. 본 연구의 주요 결과는 다음과 같다. 첫째, 합리 효율성 지수가 높고, 심미적 소비 지수가 낮을 경우 여성 집단으로 분류될 확률이 96.8%로 나타났다. 반면에 합리 효율성과 가격 지향 지수가 낮을 경우 남성 집단으로 분류될 확률이 100%로 나타났다. 둘째, 브랜드 지향, 가격 지향, 합리 효율성 지수가 높을 경우 수도권 집단으로 분류될 확률이 97.3%로 나타났다. 앞서 제시한 결과와는 상반적으로 브랜드 지향, 기념 의례, 지위 상징 지수가 낮을 경우 이외 지역 집단으로 분 류될 확률이 82.1%로 나타났다. 셋째, 지위 상징, 유행 지향 지수가 높으며, 기능성 지수가 낮을 경우 일상 생활 및 패션 집단으로 분류될 확률이 77.6%로 나타났다. 이와 반대로 지위 상징 지수가 낮고, 소속감 유지, 소비 향유 지수가 높을 경우 운동 및 경기 집단으로 분류될 확률이 81.0%로 나타났다.
        4,600원
        15.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 소셜 네트워크 서비스 중 한 유형인 플리커를 이용하여 궤적 데이터를 생성하고, 서울을 방문한 관광객의 이동 특성을 분석하였다. 연구에는 2015년 1월 1일 부터 2017년 12월 31일까지 서울을 방문한 1,476명 관광객이 게시한 플리커 사진 39,157건을 활용하였다. 연구기간 내 서울을 방문한 관광객은 1회 방문시 평균 5.12일을 체류하며, 약 1.27회 방문한 것으로 나타났다. 서울방문 관광객의 첫 방문지는 종로・남산, 신촌・홍대, 이태원 순으로 나타났으며, 주 목적지는 종로・남산이며 주로 인접 지역으로 이동하는 것으로 나타났다. 본 연구에서 활용한 데이터와 방법론은 관광행태 분석을 효율화하고, 다각적 분석을 가능하게 하는데 기여할 것으로 판단된다.
        4,500원
        16.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        People write reviews of numerous products or services on the Internet, in their blogs or community bulletin boards. These unstructured data contain important emotions and opinions about the author's product or service, which can provide important information for future product design or marketing. However, this text-based information cannot be evaluated quantitatively, and thus they are difficult to apply to mathematical models or optimization problems for product design and improvement. Therefore, this study proposes a method to quantitatively extract user’s opinion or preference about a specific product or service by utilizing a lot of text-based information existing on the Internet or online. The extracted unstructured text information is decomposed into basic unit words, and positive rate is evaluated by using existing emotional dictionaries and additional lists proposed in this study. This can be a way to effectively utilize unstructured text data, which is being generated and stored in vast quantities, in product or service design. Finally, to verify the effectiveness of the proposed method, a case study was conducted using movie review data retrieved from a portal website. By comparing the positive rates calculated by the proposed framework with user ratings for movies, a guideline on text mining based evaluation of unstructured data is provided.
        4,000원
        17.
        2018.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        빅데이터 분석을 통한 기업 경영환경에 대한 이해와 통찰을 구하고자 하는 요구가 산업 및 기업 경영 전반에 증가하고 있다. 이러한 사회적 요구에 따라 산업의 이해와 기업 경영의 이해를 위하여 기업의 경영실적 및 향후 계획을 포괄적으로 담고 있는 기업공시정보를 활용한 연구가 주목을 받고 있다. 이러한 기업공시정보는 대표적인 비정형 데이터로써 텍스트마이닝 방법론을 적용하여 그 범위와 수준에 대한 다양한 접근을 통하여 산업 수준 및 기업 수준에서 다양한 활용이 가능하다. 그러나 아직은 이러한 기업공시자료를 활용한 산업 및 기업 레벨에서 적용가능한 수준의 분석모델이 부족한 것으로 파악된다. 따라서 본 연구에서는 실제 활용 가능한 공개데이터를 활용한 산업 및 기업 수준의 분석모델을 제안하고자 한다. 미국상장기업의 공시자료인 미국 SEC EDGAR 자료를 기반으로 텍스트마이닝 알고리즘을 적용하여 산업 및 기업 수준의 경영주제(토픽)에 대한 추이분석이 가능한 모델을 제안하고자한다. SEC EDGAR의 10-K 문서를 대상으로 LDA 토픽 모델링을 통하여 산업 수준에서 전체 산업의 주제분야 분류를 파악하였고, 산업간 비교 측면에서 소프트웨어 산업과 하드웨어 산업 분야의 사례를 통해 최근 20년간의 토픽추이를 비교분석 하였다. 또한 최근 20년간의 기업의 경영주제 변화를 소프트웨어 산업에 속한 2개 기업을 중심으로 살펴보았다. 이를 통해 산업 및 기업 수준에서의 경영주제의 추이 변화를 파악하여 쇠퇴 및 성장 추세에 있는 경영주제를 확인 할 수 있었다. 한편 word2vec 워드 임베딩 모델과 주성분분석을 통한 차원 축약을 통해 소프트웨어 산업분야의 기업 및 특정 제품(혹은 서비스)에 대한 매핑을 통해 유사한 경영주제(토픽)를 가지는 기업 및 제품(서비스)을 사례를 통해 파악하였으며, 이를 시간적 흐름에 따른 변화 양상도 관찰할 수 있었다. 본 연구의 목적이 공개데이터를 활용한 산업 및 기업 수준의 분석모델을 개발하기 위한 방법론을 제안한 측면에서, 해외 데이터를 사용하여 산업의 경영주제 변화 추이, 기업의 경영주제 변화 추이를 거시적으로 조망할 수 있는 실무적인 방법론의 제안에서 의의가 있을 수 있다. 한편 기업의 기술경영전략 측면에서 기업의 경영토픽의 잦은 변화, 경영주제의 변화의 속도 등 다양한 변화 양상의 차이에 따른 기업의 매출 등의 경영성과와의 연관성 분석, 실제 기업의 제품포트폴리오의 구성에 따른 기업 간의 경쟁상황 등을 파악하는 미시적 모델 제안을 위한 추가 연구가 요구된다.
        8,100원
        18.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 차량용 반도체가 제품 출하 후 사용 환경에 따라 발생되는 불량률을 데이터 마이닝 기법을 이용하여 분석하였다. 20세기 이후 가장 보편적인 이동 수단인 자동차는 전자 컨트롤 장치와 자동차용 반도체의 사용량이 급격히 증가하면서 매우 빠른 속도로 진화하고 있다. 자동차용 반도체는 차량용 전자 컨트롤 장치 중 핵심 부품으로 소비자들에게 안정성, 연료 사용의 효율성, 운전의 안정감을 제공하기 위해 사용되고 있다. 자동차용 반도체는 가솔린엔진, 디젤 엔진, 전기 모터를 컨트롤하는 기술, 헤드업 디스플레이, 차선 유지 시스템 등 많은 부분에 적용되고 있다. 이와 같이 반도체는 자동차를 구성하는 거의 모든 전자 컨트롤 장치에 적용되고 있으며 기계적인 장치를 단순히 조합한 이상의 효과를 만들어 내고 있다. 자동차용 반도체는 10년 이상의 자동차 사용 기간을 고려하여 높은 신뢰성, 내구성, 장기공급 등의 특성을 요구하고 있다. 자동차용 반도체의 신뢰성은 자동차의 안전성과 직접적으로 연결되기 때문이다. 반도체업계에서는 JEDEC과 AEC 등의 산업 표준 규격을 이용하여 자동차용 반도체의 신뢰성을 평가하고 있다. 또한 자동차 산업에서 표준으로 제시한 신뢰성 실험 방법과 그 결과를 이용하여 개발 초기 단계 및 제품 양산 초기 단계에서 제품의 수명을 예측 하고 있다. 하지만 고객의 다양한 사용 조건 및 사용 시간 등 여러 변수들에 의해 발생되는 불량률을 예측하는 데는 한계가 있다. 이러한 한계점을 극복하기 위하여 학계와 산업계에서 많은 연구가 있어왔다. 그 중 데이터 마이닝 기법을 이용한 연구가 다수의 반도체 분야에서 진행되고 있지만, 아직 자동 차용 반도체에 대한 적용 및 연구는 미비한 상태이다. 이러한 관점에서 본 연구는 데이터 마이닝 기법을 이용하여 반도체 조립(Assembly) 과 패키지 테스트(Package test) 공정 중 발생 된 데이터들간의 연관성을 규명하고, 고객 불량 데이터를 이용하여 잠재 불량률 예측에 적합한 데이터 마이닝 기법을 검증하였다.
        7,800원
        19.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Current evaluation practices for IT projects suffer from several problems, which include the difficulty of self-explanation for the evaluation results and the improperly scaled scoring system. This study aims to develop a methodology of opinion mining to extract key factors for the causal relationship analysis and to assess the feasibility of quantifying evaluation scores from text comments using opinion mining based on big data analysis. The research has been performed on the domain of publicly procured IT proposal evaluations, which are managed by the National Procurement Service. Around 10,000 sets of comments and evaluation scores have been gathered, most of which are in the form of digital data but some in paper documents. Thus, more refined form of text has been prepared using various tools. From them, keywords for factors and polarity indicators have been extracted, and experts on this domain have selected some of them as the key factors and indicators. Also, those keywords have been grouped into into dimensions. Causal relationship between keyword or dimension factors and evaluation scores were analyzed based on the two research models-a keyword-based model and a dimension-based model, using the correlation analysis and the regression analysis. The results show that keyword factors such as planning, strategy, technology and PM mostly affects the evaluation result and that the keywords are more appropriate forms of factors for causal relationship analysis than the dimensions. Also, it can be asserted from the analysis that evaluation scores can be composed or calculated from the unstructured text comments using opinion mining, when a comprehensive dictionary of polarity for Korean language can be provided. This study may contribute to the area of big data-based evaluation methodology and opinion mining for IT proposal evaluation, leading to a more reliable and effective IT proposal evaluation method.
        4,000원
        20.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recent development in science and technology has modernized the weapon system of ROKN (Republic Of Korea Navy). Although the cost of purchasing, operating and maintaining the cutting-edge weapon systems has been increased significantly, the national defense expenditure is under a tight budget constraint. In order to maintain the availability of ships with low cost, we need accurate demand forecasts for spare parts. We attempted to find consumption pattern using data mining techniques. First we gathered a large amount of component consumption data through the DELIIS (Defense Logistics Intergrated Information System). Through data collection, we obtained 42 variables such as annual consumption quantity , ASL selection quantity, order-relase ratio. The objective variable is the quantity of spare parts purchased in f-year and MSE (Mean squared error) is used as the predictive power measure. To construct an optimal demand forecasting model, regression tree model, randomforest model, neural network model, and linear regression model were used as data mining techniques. The open software R was used for model construction. The results show that randomforest model is the best value of MSE. The important variables utilized in all models are consumption quantity, ASL selection quantity and order-release rate. The data related to the demand forecast of spare parts in the DELIIS was collected and the demand for the spare parts was estimated by using the data mining technique. Our approach shows improved performance in demand forecasting with higher accuracy then previous work. Also data mining can be used to identify variables that are related to demand forecasting.
        4,000원
        1 2 3 4